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Chapter 1          Principle of FFWS design 

 

Flooding from main rivers is caused by heavy rainfall upstream, or dam breach and can also be caused by flood 

surges up rivers from the sea – caused by high tides, low pressure and strong winds that all they can manage by 

FFWS techniques 

1-1-Main measures to manage floods 

Daliri, 2014, 2019 listed all flood control techniques [1], including mechanical and biological 

as well as systematic planning. Now In this text, 10 main measures that must be taken to 

prevent more flooding in the future: 

1.  Introduce better FFWS and flood alerts if must live with floods 

At first, the governments must "improve our flood warning systems", giving people more time 

to take action during flooding, potentially saving lives, the deputy chief executive of the 

Environment Agency, David Rooke, said. Advance flood forecasting (FF) - warning system 

(WS) and pre-planning can significantly reduce the impact from flooding. Moreover, Flood 

alerts are issued by weather agencies to alert residents that flood conditions are a possibility. 

Flood Alerts are able to be used to warn those living in flood risk areas in addition to any 

press reporting. 

 

Fig. 1-1 The floods are a national disaster in world 

 

 

https://en.wikipedia.org/wiki/Flood
https://www.independent.co.uk/voices/letters-make-no-mistake-the-floods-in-the-north-are-a-national-disaster-a6787651.html
https://www.independent.co.uk/news/uk/uk-flooding-devastated-families-claim-they-were-sacrificed-to-the-floods-a6788851.html
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2. Modify our buildings to help them withstand floods 

The focus should be on “flood resilience” rather than defence schemes, we can use 

concreting floors and replacing materials such as MDF and plasterboard with more robust 

alternatives. “We are going to have to live with flooding. “We need to be prepared and 

increase flood resilience: 

- Waterproofing homes and businesses (Flood resistance) 

- Moving electric sockets higher up the walls (increase resilience) 

- ….. etc.  

3. Flood defence schemes [2,9] and preparedness [3,4] and flood fighting 

River flooding is often typified by long durations and relatively high velocities. We have a 

relatively good level of data to understand areas susceptible to river flooding, with studies of 

catchment areas, river profiles and flood plains helping the provision of effective river flood 

defences. Some river flood defence schemes utilise land upstream to store floodwater to 

regulate the flow through constrictions (retarding dams, by pass, flood spreading, artificial 

recharge etc.) – typically through towns and cities. 

The other options for river and sea coastal defences are: 

Permanent solid flood walls and banks. These have the benefit of being permanently 

installed, with minimal operation and maintenance cost. However, the visual amenity of rivers 

within an urban setting mean that these flood defence solutions can be obtrusive (Aesthetic 

sense), especially if above 1 metre in height. (kinds of Groyne, Epi, Gates).(Fig. 1-2). 

Demountable river barriers. These river defence barriers normally comprise removable 

posts and beams that can be fitted along the side of a river in advance of a flood. There is no 

visual intrusion when not installed, but they do require a logistical operation to install and 

remove each time. (Fig. 1-3). 

Glass Floodwalls. These have the benefit of offering permanent flood defence, whilst 

minimising the visual impact. Glass floodwalls can be incorporated with a solid wall to give 

greater heights of river flood protection, as well as with flood gates or demountable river 

defences. The Environment Agency’s recent 'Wells-Next-the-Sea' project illustrates the benefits 

of a glass floodwall over permanent and demountable defences. 

 

http://www.floodcontrolinternational.com/PRODUCTS/FLOOD-BARRIERS/demountable.php
http://www.floodcontrolinternational.com/PRODUCTS/FLOOD-BARRIERS/glass-barriers.html
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4. Construct buildings above flood levels 

We can construct all new buildings in flooding area one metre from the ground to prevent flood 

damage. Professor David Balmforth, who specialises in flood risk management, said 

conventional defences had to be supplemented with more innovative methods to lower the risk 

of future disasters. 

 

Fig. 1-2 FLOOD GATES BY RIVERS 

Flood gates help protect pathways and openings by rivers from flooding. 

 

s and op  by    

Fig. 1-3 For large scale flood defence, flood fighting and preparedness from river flooding, the Portable 
Cylinder Flood Barrier system provides a tried and tested alternative to sandbags.[2],[3],[4]. 
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5. Tackle climate change 

Climate change has contributed to a rise in extreme weather events, scientists believe. Earlier 

governments from 195 countries pledged to “pursue efforts” to limit the increase in global 

average temperatures to 1.5°C above pre-industrial levels. “It is now crucial that world leaders 

deliver on the promise of Paris,” Ms Bennett said. “The pressure is now on the British 

government to reverse its disastrous environmental policy-making.” Moreover we can 

estimate effect of storm and flood extreme values by uncertainty analysis.[1]. 

6. Protect wetlands and introduce plant trees strategically 

The creation of more wetlands and agricultural and forest management – which can act as 

sponges, soaking up moisture – and wooded areas can slow down waters when rivers 

overflow. These areas are often destroyed to make room for agriculture and development. 

Halting deforestation and wetland drainage, reforesting upstream areas and restoring 

damaged wetlands could significantly reduce the impact of climate change on flooding, 

according to the conservation charity. 

7. Restore rivers to their natural courses - river training & engineering 

Many river channels have been historically straightened to improve navigability.  

Remeandering straightened rivers by introducing their bends once more increases their 

length and can delay the flood flow and reduce the impact of the flooding downstream.  

8.  Introduce water storage areas 

Following the severe flooding of 2009 a £5.6 million flood alleviation scheme was established 

in Thacka Beck, on the outskirts of Penrith, Cumbria. More than 675 metres of culverts 

underneath the streets of Penrith were replaced and a 76,000m³ flood storage reservoir – the 

equivalent of 30 Olympic sized swimming pools – was constructed upstream to hold back 

flood water. The risk of flooding from the beck was reduced from a 20 percent chance in any 

given year to a one percent chance, according to Cumbria Wildlife Trust.  

9. Put up more flood barriers 

The Environment Agency uses a range of temporary or “demountable” defences in at-risk 

areas. These can be removed completely when waters recede. Temporary barriers can also 

be added to permanent flood defences, such as raised embankments, increasing the level of 

protection.  
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“As the threat and frequency of flood risk increases, the use of passive flood defence (Deploy-

Auto) or Infrastructure Intelligence has to be the only realistic long term solution. Mr Kelly’s 

company was responsible for designing a self-activating flood barrier he said had proved to 

be “invaluable” in protecting properties close to the River Cocker.(Fig.1-4)   

 

Fig. 1-4 Passive flood defence- Infrastructure Intelligence 

 

10. Watershed management based on Systematic planning of soil-water-plant-human 

Inappropriate soil management, machinery and animal hooves can cause soil to become 

compacted so that instead of absorbing moisture, holding it and slowly letting it go, water 

runs off it immediately. Well drained soil can absorb huge quantities of rainwater, preventing 

it from running into rivers. 

 River basin is work unit for water management. Watershed or catchment or river basin 

management include all above mention together. Daliri (2009) showed, river basin 

management based on concept of hydro-system engineering can be solved by LP 

programming in Lingo software [5, 6]. He mentioned softwork structures (by pass, dyke, chek-

dam, gabion, …ect.) and hardwork structutres (Big dams, .. ect.) as well as biological 

methods (pitting, reforestation,… etc.) beside environmental and economic considerations 

can be set in LP or another integrated water and system planning.  
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1-2-Terminology of FFWS  

Flood definition 

In this book, flood is damaging flood. In coastal sea floods such as tsunami, flood is rising 

tide that can be a huge water body with high speed toward the coast. In river floods, flood is 

rising in discharge or water level over areas that are not normally submerged [1]. 

River-Flood forecasting (RFF) is the use of forecasted precipitation and streamflow data 

in rainfall-runoff and streamflow routing models to forecast flow rates and water levels for 

periods ranging from a few hours to days ahead, depending on the size of the watershed 

or river basin[1]. Flood forecasting can also make use of forecasts of precipitation in an 

attempt to extend the lead-time available. 

A Flood warning system (WS) is closely linked to the task of flood forecasting. The 

distinction between the two is that the outcome of flood forecasting is a set of forecast time-

profiles of channel flows or river levels at various locations, while "flood warning" is the task 

of making use of these forecasts to make decisions about whether warnings of floods should 

be issued to the general public or whether previous warnings should be rescinded or 

retracted. 

Real-time flood forecasting at regional area can be done within seconds by using the 

technology of artificial neural network.[1] Effective real-time flood forecasting models could 

be useful for early warning and disaster prevention. 

Types of flood alerts 

In the United States, a flash flood watch is issued by the National Weather Service (NWS) 

when weather conditions are favorable for very heavy rain that could cause flooding or flash 

flooding. A watch (Yellow Situation) does not mean that flooding is occurring, only 

that weather conditions have created or will create a significant risk for it. If flooding occurs, 

a flood warning (Red Situation) or flash flood warning would be issued and immediate action 

should be taken. A flood warning or flash flood warning is issued when flooding is imminent 

or already occurring. When flood warnings are issued, it means that area waterways will likely 

soon be in flood. Not all flood watches suggest that large-scale flooding, such as 

during landfalling tropical cyclones, is possible. 

 

https://en.wikipedia.org/wiki/Precipitation_(meteorology)
https://en.wikipedia.org/wiki/Streamflow
https://en.wikipedia.org/wiki/Runoff_model
https://en.wikipedia.org/w/index.php?title=Streamflow_routing&action=edit&redlink=1
https://en.wikipedia.org/wiki/Drainage_basin
https://en.wikipedia.org/wiki/Drainage_basin
https://en.wikipedia.org/wiki/Flood_forecasting
https://en.wikipedia.org/wiki/Flood_forecasting#cite_note-2
https://en.wikipedia.org/wiki/United_States
https://en.wikipedia.org/wiki/Flash_flood_watch
https://en.wikipedia.org/wiki/National_Weather_Service
https://en.wikipedia.org/wiki/Rain
https://en.wikipedia.org/wiki/Flash_flood
https://en.wikipedia.org/wiki/Flash_flood
https://en.wikipedia.org/wiki/Weather
https://en.wikipedia.org/wiki/Flood_warning
https://en.wikipedia.org/wiki/Flash_flood_warning
https://en.wikipedia.org/wiki/Waterway
https://en.wikipedia.org/wiki/Landfall_(meteorology)
https://en.wikipedia.org/wiki/Tropical_cyclone
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Flash flood watch is issued by the National Weather Service when conditions are favorable 

for flash flooding in flood-prone areas, usually when grounds are already saturated from 

recent rains, or when upcoming rains will have the potential to cause a flash flood. Also, when 

time of concentration is very short, the basin potential can cause flashy flood [1]. These 

watches are also occasionally issued when a dam may break in the near future. 

PDS watches (Particularly dangerous situation) 

In the event that a flash flood watch is likely to lead to a major flash flood disaster, enhanced 

wording with the words This is a particularly dangerous situation (PDS) can be added to the 

watch; this is occasionally issued. 

Flood alerts in other countries: (National Flood Warning Services) 

The type of flood warning service available varies greatly from country to country, and a 

location may receive warnings from more than one service. Countries such as Australia also 

issue similarly worded warnings. In Canada, a heavy rainfall warning, which indicates 

rainfall amounts that could produce flooding are expected, has basically the same meaning 

as a flood watch. 

In Australia, the Bureau of Meteorology issues a flood watch that covers similar conditions 

to Flood Watches in the United States. However, they are known by slightly different names 

in some areas. In Europe, there is the European Flood Alert System. 

 In Iran, Daliri.F categorizes flood alert similar coloring maps based on real time flood zoning 

and concept of above mentaions.   

In the United States, the National Weather Service issues flood watches and warnings for 

large-scale, gradual river flooding. Watches are issued when flooding is possible or expected 

within 12–48 hours, and warnings are issued when flooding over a large area or river flooding 

is imminent or occurring. Alerts can be issued on a county-by-county basis or for specific 

rivers or points along a river. When rapid flooding from heavy rain or a dam failure is 

expected, flash flood watches and warnings are issued. 

In the U.S. and Canada, dissemination of flood warnings is covered by Specific Area 

Message Encoding (SAME) code FLW, which is used by the U.S. Emergency Alert 

System and Radio-network and in Canada's Weatheradio Canada network. 

https://en.wikipedia.org/wiki/National_Weather_Service
https://en.wikipedia.org/wiki/Flash_flood
https://en.wikipedia.org/wiki/Floodplain
https://en.wikipedia.org/wiki/Dam
https://en.wikipedia.org/wiki/Particularly_dangerous_situation
https://en.wikipedia.org/wiki/Flash_flood
https://en.wikipedia.org/wiki/Canada
https://en.wikipedia.org/wiki/Heavy_rainfall_warning
https://en.wikipedia.org/wiki/Australia
https://en.wikipedia.org/wiki/Bureau_of_Meteorology
https://en.wikipedia.org/wiki/European_Flood_Alert_System
https://en.wikipedia.org/wiki/United_States
https://en.wikipedia.org/wiki/National_Weather_Service
https://en.wikipedia.org/wiki/Flash_flood_watch
https://en.wikipedia.org/wiki/Flash_flood_warning
https://en.wikipedia.org/wiki/Canada
https://en.wikipedia.org/wiki/Specific_Area_Message_Encoding
https://en.wikipedia.org/wiki/Specific_Area_Message_Encoding
https://en.wikipedia.org/wiki/Emergency_Alert_System
https://en.wikipedia.org/wiki/Emergency_Alert_System
https://en.wikipedia.org/wiki/Weatheradio_Canada
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"Flood statements" are issued by the National Weather Service to inform the public of 

flooding along major streams in which there is not a serious threat to life or property. They 

may also follow a flood warning to give later information.  

The Iowa Flood Center at the University of Iowa operates the largest real-time flood 

monitoring system of its kind in the world. It includes more than 200 real-time stream stage 

sensors that feed data into the Iowa Flood Information System where data can be viewed, 

online, by disaster management staff and the general public. The stream stage sensors, 

mounted on bridges and culverts, use ultrasonic sensors to monitor stream and river levels. 

Other alerts: 

Tornado warning, Tornado watch, Severe thunderstorm warning and watch. 

 

1-3- Framework of FFWS 

The twelfth session of the Commission for Hydrology, held in Geneva in October 2004, 

established flood forecasting and prediction as one of the thematic panel areas. Figure 1.5 

shows the significance of flooding in the context of all water-based natural disasters [10]. 

 
Fig. 1-5 Water related natural hazards, 1990-2001 [10] 

 

 

 

https://en.wikipedia.org/wiki/National_Weather_Service
https://en.wikipedia.org/wiki/University_of_Iowa
https://en.wikipedia.org/wiki/Tornado_warning
https://en.wikipedia.org/wiki/Tornado_watch
https://en.wikipedia.org/wiki/Severe_thunderstorm_warning
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Extreme weather events over the last decade have fueled the perception that, whether due 

to anthropogenic global warming, and other human interference, flooding is becoming more 

extreme, more widespread and more frequent. “As the risks and the costs of such natural 

disasters are likely to increase due to global social and environmental changes, there is 

widespread debate among stakeholders and activists “on issues of responsibility and liability, 

as well as on the appropriate measures for mitigating losses and providing relief to victims” 

(Linnerooth-Bayer and Amendola, 2003, [10])”. Such prospective developments have given 

rise to increased emphasis on the improvement of operational flood forecasting and the 

enhancement and refinement of flood-risk management systems (Arduino et al., 2005, [10]). 

Essential elements require to organize an effective real-time Riverine Flood Forecasting 

Systems (RFFS) or other FFS are: 

-Weather-prediction (quantity and timing) based on numerical models or other technology 

-Hydrometric stations (manual or automatic) linked to telemetry 

-Flood forecasting models linked to the observing network 

 

1-3-1-Main components 

We can count, main components of a FFWS the following or figure 1.6: 

- Basic data of meteorology, numerical weather prediction such as GCM,  hydrology, 

hydraulic and function of system (physiography, infiltration, relief, land use, 

vegetation…), based on expected accuracy in historical and real-time data for 

prediction of flood characteristics (severity, time of onset, extent and magnitude of 

flooding); 

- Integrated system models (Mike, etc.) to Preparation of forecasting information for 

riverine flood or coastal sea surge and level forecasting; 

- Warning systems (linked to Telemetry, models, ..) and warning messages or other 

communication tools, giving clear statements and Interpretation on what is happening, 

forecasts of what may happen and expected impact; 

- Have a plan during warning for goal points, Communication and dissemination of such 

messages, which can also include what action should be taken; 
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- Symphonic of organization structure: Response to the warnings by the agencies and 

communities involved; 

- Improvements and develop this process after events; 

- The linkages Hydro-Informatics tools and other technologies such as IT, GIS, RADAR, 

Satellite, etc; 

 

-  

 

 

 

 

 

 

 

 

 

 

 

Fig. 1-6 Main components of a FFWS, WMO-2011 [after Wallingford Software] 

 

1-3-2 Institutional aspects 

In Iran, Flood management requires a cooperation and variable degree of response from the 

regional and local water management, municipal authorities, transport and communications 

operations and emergency services in home office. So the institutional structure and 

responsibility may become complicated for operative FFWS. A flood forecasting and warning 

system needs to have clearly defined roles and responsibilities. “These are wide ranging, 

covering, inter alia, data collection, formulation and dissemination, uncertainty of outputs and 

any legal or liability requirements”[10]. 



       

         Flood Forecasting Uncertainties 

 

 

 

2
1

 

 In Iran, Several ministries carry separate responsibilities for activities related to flood 

forecasting and warning. If activities of flood forecasting and warning be focused in the 

hydrometeorological sector is a relatively better. This situation provide the opportunity to 

enhance the development of monitoring networks specifically for flood forecasting and 

warning purposes for instant. Hydrological networks comprise instruments that have 

electronic facilities for data storage and transmission (raingauges and water level recorders) 

and meteorological networks can focus on collection and delivery of satellite and radar data. 

 

1-3-3 Legal aspects 

In many countries governments can provide assistance in rebuilding after floods, but there is 

no legal obligation. Insurance is increasingly fulfilling the role of government in recovery 

actions. Liability in strict legal terms is difficult to apply to the various activities in flood 

forecasting and warning. Any flood forecasting and warning system has to deal with 

uncertainty. This situation also leads to insurance companies deciding on what is or is not a 

worthwhile risk, which often leads to properties in high-flood-risk areas being uninsurable[10]. 

 

1-4 Main considerations of FFWS 

Flood control is very expensive and there are many environmental, technical and economic 
limitation for flood control structures. Moreover design an adequate flood forecasting and 
warning services for protection of lives, assets and support of the civil protection and 
emergency response services in these areas is a growing necessity in many countries. The 
type and level of these services that is required or can be achieved technically and 
economically. In the following subsections Main considerations of FFWS will be examined: 
 

1-4-1 Technical considerations 

1-4-1-1 Watershed types 

The most important parameters of catchment that can be effect on flood characteristics such 

as flood wave velocity and travel time are river slope, reach length and steepness, slope of 

basin, basin size, density of channels, and shape of basin. These parameters can measure 

in physiography study by GIS tools and some field sampling in supplementary studies. 
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In urban area and catchments that man-made structures exist also other parameters such as 

pipe lines, dam reservoirs, kinds of flood wall, channels, culverts, bridges, high proportion of 

effective pavement area, etc. must be study. Moreover, types of catchment can be 

characterized based on basin area and their different temporal and spatial responses to 

hydro-meteorological pulses: 

A) Basin size of urban area are very small (less than 5 or 10 km2), with densely populated 
and impermeable surfaces so the system respond in the order of one or two hours and 
can overwhelm the capacity of the drainage network. Urban basins may be have several 
inputs from Mountain Rivers in upstream. 

B) Small sized of catchment areas are set between 10 to about 50 or 100 km2  which will 
often produce rapid run-off specially with steep slopes that can be take travel time about 
few hours with react quickly. This situation often there is in up-stream of the big 
watersheds. 

C) Medium sized of Watershed areas of between 100 to 1000 km2 characterized by long-
distance flow propagation with varying contribution of tributaries. For these basins, flood 
can take half a day to affect the lower reaches. Also response of the systems in this range 
area and upper than, relevant to slope and structure of the soil specially. 

D) Large sized of rivers have the basin areas of between 1000 to 10 000 km2. For these 
basins, flood can take days to affect the lower reaches. 

E) “Basins and continental rivers with catchments in excess of 10 000 square kilometres 
form a subset of large rivers for which flood response is in terms of weeks and reflects 
major seasonal meteorological conditions” [10]. 

F) Other kinds of flooding such as groundwater flooding, Groundwater-controlled river 
systems and interface flooding in estuaries (combined or single influence of tide effects, 
maritime storm surge, riverine floods, and wind effect in wide estuaries) there are. All of 
them have specific systems (f (.)). Propagation lead time in estuaries is of order of several 
hours depending on the length of the upstream reach, or wind intensity over estuary and 
in Groundwater-flooding systems can produce long-duration flooding, lasting several 
weeks in some cases. 
 

1-4-1-2 System responses 

If in a linear simple system, Y is input, and f (.) is function, so response R of the system is [1]: 

R = f (.) Y 
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Understanding function of the system and other coefficients and parameters in above 
equation, before design an effective FFWS is necessary [1]. R is flood response, and it 
depends to f (.) in here flooding processes or physical processes. “The nature of any 
forecasting services that may be provided is firstly dependent above all on the types of 
flooding processes occurring in the basin” [10]. So it is clear that any one forecasting service 
may need to accommodate a range of basin types or f (.). (Table 1-1). 
In forecasting services that based on meteorological data only, or combine of it with 
hydrological data (effect of f (.)) we can have other understanding of type of services.  
 

Table 1-1 Interaction between basin size, physical process and flood response [10] 

 

Based on the above mentioned in urban area a critical rainfall threshold may be benefit in 
FFWS design (pluvial flooding) and for the identification of flooding hot-spots in low lying parts 
of towns or where drainage systems there are not. So at first must understand the f (.) system 
then design FFW services based on combination of real conditions. It is clear can be 
monitored and prediction of system behaviour by a combination of observation and modeling 
based on different approaches of each type of basin flooding (physical processes). For 
example, in the urban area or basins with react quickly, to predict assuring sufficient lead 
time, emphasis must be on effective real-time meteorological observations and forecasts, 
rapid transmission and processing of data as well as understanding of the bahaviour of 
localized high intensity storm characteristics and the capacity of drainage systems. In this 
situation the good quality meteorological forecasts may be used to produce early, modelled 
flood estimates. 
In large basin areas emphasis is on the distribution and patterns [11, 12] of rainfall as well as 
the observation of hydrological responses of contributing basins. Although in some cases, 
local storm data observations by telemetric raingauges or radar is important (localized flood 
response). 
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1-4-1-3 Flood types 

Before design a FFWS we must have a basic studies on historical flood hydrology of the 
region. For example cause of flood in an area may be relevant to dam break probability or 
seasonal storms or intense local storms. In tsunami disaster for example, cause may be 
relevant to gravity of the moon (tide), wind, earthquake, landslide in sea or air pressure. So 
methods of forecasting and warning are different based on source and conditions of flood 
event such as urban floods, fluvial (riverine) floods, man-made floods, groundwater flooding, 
single and multiple event floods, flash floods, seasonal floods, coastal floods, estuarine 
floods, snowmelt floods, ice or debris-jam floods. There is thus no set design for a flood 
forecasting system and each will require a different forecasting approach. Thus headwater 
areas may require a system concentrating on flash floods, whereas flood plain areas may 
need a system to be focused on the slow build-up of flooding and inundation. [1,10]. 
 
Flash floods 
Flash flooding are often the result of heavy rains with short duration such as intense and short 
duration convection storms often in summer, or frequent severe thunderstorms over small 
basins with steep slopes. “This type of flooding commonly washes away houses, roads and 
bridges over streams reach and so has a critical impact on communities and transport in 
these often remote areas. Moreover, Flash flooding can also occur in localized areas when 
ground has been baked hard by a long, dry period” [10]. 
 
Riverine floods (fluvial floods) 
These floods can occur as a result from wet or dry conditions in an upper portion of a 
catchment of major seasonal rainfall activity based on monsoon conditions in basin-wide 
situation that can last for periods of several weeks. In these conditions, a number of individual 
peak or multiple event floods can occur. Also this type of flooding with heavy rains lasting 
several hours to a few days over a drainage basin may be are associated with cyclonic 
disturbances, mid-latitude depressions and  jet-stream storms (Iran, Flooding, March- 
2019), with well-marked synoptic scale frontal systems, single or successive weather 
disturbances following closely after each other. All above mentions are dangerous to human 
life as well as flash floods are riverine flooding that such as spilling over the natural banks or 
artificial embankments (man-made floods) over flood plains as a result of flow exceeding 
the capacity of the stream channels can forecast and warn when occur over a wide range of 
river and urban or rural catchment systems. 
 
Snowmelt floods 
We must study and analyzing synchronization of snow melting with temperature rapid rise 
and warm, heavy rainfall.  
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This situation can occur in upland and high latitude regions with huge snow pack over winter, 
where the spring thaw produces meltwater run-off. If the sub-soil remains frozen or/and there 
is a hardpan layer in 1 to 3 meter depth from the top-soil, flood disaster can be further 
exacerbated. 
 
Urban floods (pluvial floods) 
Urban drainage systems include pipes, culvert, prismatic channels, river channels, culvert, 
manhole and wastewater network, pumps, ect. Run-off creates from paved and built areas 
within towns and cities and up-stream river basins. Urban flooding occurs when the drainage 
system is weak (there is an intense storm bigger than design return period) or lack of 
maintenance, especially in down-stream (In low-lying areas formation of ponds due to 
drainage obstructions caused by debris blocking drainage culverts and outlets). 
 
Coastal floods 
In this kind of the flood, such as tsunamis, raising of sea levels may be due to low atmospheric 
pressure, gravity of the moon (tide), high winds, earthquake, and landslide in sea or 
combination of 2 of them. Number of major cities situated in delta areas or major estuaries 
or confined sea areas, piling up of water is amplified by a combination of the shallowing of 
the seabed and retarding of return flow (cyclones) or winter depressions [10]. If river floods 
empty to sea, in joint place or inlet areas, (Estuarine floods) body of the flood water will be 
obstructed due to the sea surge or vice versa. In this situation, back-water can be miserable 
to reach stream to several kilometers in up-stream (interaction between the seaward flow of 
river water and landward flow of saline water). Although this kind of the floods are frequently 
and less severe than flooding caused by storm surges, mostly experienced in deltaic areas 
of rivers along the coasts.  
 
Other natural floods 
Similar dam break flood (man-made floods) there are 2 other kinds of natural floods that 
named ice and debris-jam floods. If water accumulate behind of the ice floes or landslip, when 
theses collapse or are breached, severe flooding can result. Although Prediction both of these 
are very difficult, we can predict hazardous zones. 
 

1-4-1-4 Meteorological considerations  

Climatology and meteorology observations and forecasting are a vital requirement especially 
in small-sized basins. Meteorological phenomena are the prime natural causes of flooding, 
either as rainfall, snow or snowmelt. So it is important that a representative proportion of the 
raingauge network (time and space) is linked to the forecasting and warning control centre 
by telemetry. This has a three-fold aim: 
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(a) To monitor the system; 
(b) To give warnings against indicator; 
(c) To provide inputs for rainfall–runoff models.  
These events may be: 
- Seasonality of rain-bearing Systems: (for example Monsoon Asia, tropical Africa and Central 
America). For this area must to be paid to ensuring sufficient staff cover to allow both regular 
situation updates and round-the-clock monitoring of severe conditions. 
- Random occurrence: That staff routine tasks may be wider. 
 
Weather forecasting may be based on: 
A) Climatology understanding: 

- The understanding of rainbearing systems, their seasonality and the extremes of their 

behavior; 

- Understanding the types of weather systems from which flooding can originate will 

contribute largely to decisions about what sort of observational and forecast systems 

may be required; The most effective means for rapid recognition (flash floods) of an 

event would be by satellite or radar, while broad scale, synoptic forecasting would be 

of limited value. 

- Hydrometeorological statistics dealt with from climatology data: (primarily rainfall, but 

also evaporation). The purpose of the data and statistics is to estimate the severity 

and probability of actual or predicted events and to place them in context. 

- Historical data: (evaporation and/or climatological stations) 

B) Synoptic & Climatology understanding: forecast methods based upon analysis of a set 

and/or series of synoptic charts or/and maps; the most common means of arriving at a 

weather forecast. 

1-4-1-5 Hydrological considerations 

Having real-time information and an understanding of the overall flood characteristics of the 

area is necessary. Water levels in rivers, lakes, river discharge, velocity of the floods and in 

some cases groundwater levels are the most important key observation and real-time-data 

requirements of the hydrology. The observation stations provide basic data for historical 

analysis and telemetry measuring to provide data to a control center of FFWS. In general, 

main means to predict of levels, timing and extent of flooding are: 
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- Simple methods: 
These methods include as tables or graphs of level-to-level correlations (upstream-
downstream relationship between water levels or ect.) and time of travel (the time taken from 
a peak at an upstream point to reach a lower one). Water level ranges at given points (flood-
risk site) can be linked to various extents of flooding (flood zones), so a series of thresholds 
can be set up to series of watching and warning through telemetry.  
 

- Comprehensive methods: 

Real-time flood modelling specially based on IFM or Integrated Flood Managements, in crisis 
management cycle (preparedness, response and recovery) [1]) can provide the facility to 
provide more comprehensive information on predictions of flood characteristics such as 
levels, timing and extent of flooding and flood mitigation measures. 
 

1-4-1-6 Risk, Uncertainty and impacts 

A wide discussion about flood risk and uncertainty in water resources can be find in refer [1]. 

Briefly risks relevant to uncertainties. In hydrology there are kinds of uncertainties such as: 

intrinsic and model uncertainties (Objective-first order). Intrinsic uncertainties can be estimate 

by reliability of analysis, return period based on economic losses. Model uncertainties include 

truncation, rounding, and parameter uncertainty. In FFWS, other kinds such as society 

(population growth and density) and economic risks can be account also. FFWS has to 

operate over a range of event magnitudes (impacts) include small-impact flooding which can 

be manage by simple measures, such as installing temporary defences, closing flood gates 

and barriers (above mentioned), to larger scale flooding, where damaging floods and losses 

occur, and evacuation of areas at risk takes place or catastrophic events, for instant dam or 

embankment failure, that can be manage by FFWS with emergency action plans (EAPs), 

although my not be fully effective.  

 1-4-1-7 Service type 
Selection level of the service relevant to costs, accuracy, data and the f (.), data requirements 
(such as inundation depth or extent or both of them, etc.), knowledge of the flood modeling, 
Operation and Maintenance and Repair condition (economic conditions) and severity of flood 
losses. The different types of services, from the simple levels to those of greatest quality, be 
summarized as follows by the author: 

a) Threshold- based rainfall alert 

b) Threshold-based flood alert 

c) Flood forecasting with simple warning system 
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d) Flood forecasting with advanced warning system 

e) Inundation FFWS 

Threshold based rainfall or flood alert for simple services (basic minimal levels) can be based 
on real-time data measurements at synoptic stations or along rivers data such as flood 
hydrograph (lemingraph data recorder). Extrapolations and qualitative estimations are made 
at time intervals to revise the projection of potential or actual flood conditions. Knowledge of 
the behaviour of the river is requirement in a and b levels also. C and d levels that are more 
definitive Service types, based on the use of simulation tools and modelling (simple to 
sophisticated models). Simple methods such as statistical curves, level-to-level correlations 
or time-of-travel relationships to numerical models that integrate and replicate the behaviour 
of rivers throughout the basin, must be calibrated beforehand by using historical and future 
(regular checking) data from recorded floods [1]. The information delivered by a simple 
warning service as in the flood alert (sms, radio, siren, ect.) is set to station locations, and 
focused on specified locations at risk. In advanced warning systems (Vigilance mapping) 
produced a map-based visualization (for example the vigilance map in France) as an Internet 
service. The levels of risk derived from observations or models are characterized by a colour 
code (in the French example, greepropn, yellow, orange, red) indicating the severity of the 
expected flood. In inundation forecasting, that is the most sophisticated level based on 
hydrological or hydrodynamic level-and-flow models (distributed models, [1]) with digital 
representation of the flood plain land surface. This class is appropriate to sensitive areas of 
flood plain, where flood extent is dictated by minor relief, such as urban areas with housing 
areas, power stations, road or rail bridges and such as.  
1-4-1-8 lead time 
Lead time is an opportunity for exposed people to move vulnerable properties to upper 
storeys or put sandbags [2] or other small barriers in appropriate place that may require from 
one to two hours or Protection of larger infrastructure, setting up of road diversions and 
movement of farm animals to a place of safety may require lead times of several hours or for 
evacuating populations at risk places in large rivers but major potential impact that  may 
require lead time in the order of days. The following equation describes concept of lead time 
simply [1]: 

fwmct TTTL  )(  

𝐿𝑡: Lead time,  

wec TTT  : Hydrological lead time (catchment response) or Time of concentration (𝑇𝑐), Time 

of catchment entry ( eT ), and wave travel time at critical reach (𝑇𝑤); 

mT : Rain-forecast lead time 

fwT Time delay (Computations_ validation, calibration, rain or/and flood Forecast, dissemination). 
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In flood mitigation programs, increasing 𝑇𝑐  can do by watershed management (biological 
or/and hard-works methods such as retarding basin dams and etc.). In small basins and 
urban area, rain forecasting and/or telemetric rain-gauge data or radar rainfall technology can 

provide additional advance warning because increasing 𝑇𝑚. Moreover huge computers can 
help to compute rapidly, so 𝑇𝑓𝑤 be short. Usually threshold measure between normal floods 

and flash floods is 6 hours and rain forecasting is necessary for flashy flood forecasing. 
Additional information can be found on the following Websites: 
– Australia: http://www.bom.gov.au/hydro/flood; 

– United States of America: http://www.weather.gov.ahps; 

– France: http://www.vigicrues.ecologie.gouv.fr; 

– United Kingdom: http://www.environmentagency.gov.uk/homeandleisure/floods. 

 
1-4-1-9 Dissemination and warning systems 
Flood warnings are distinct from forecasts, as they are issued when an event is occurring, or 
is imminent. Warnings maybe issue based on meteorological warning (Fig. 1.7) or 
hydrological (flood) warning (Fig. 1.8). Flood warnings must be issued to a range of users, 
for various purposes. These purposes include [10]: 
(a) To bring operational teams and emergency personnel to a state of readiness; 
(b) To warn the public of the timing and location of the event; 
(c) To warn as to the likely impacts on, for example, roads, dwellings and flood defence 
structures; 
(d) To give individuals and organizations time to take preparatory action; 
(e) In extreme cases, to give warning to prepare for evacuation and emergency procedures. 
So flood warnings need to be understood quickly and clearly and so considerable attention 
has to be given to how technical information is conveyed to non-specialists from 
organizations, the public, the media and in some cases illiterate population groups. 
Prior to issuing a flood warning, consideration is given to [10]: 
The needs of communities to activate emergency response plans; 
The nature of the catchment or coastline and the lead time that may be provided; 
Meteorological observations and forecast information on rainfall and coastal water levels; 

Hydrological observations and flood forecasts reference to thresholds of historic or forecast 

flood levels (Fig 1.9). 

Dissemination of flood warnings has moved towards a service whereby those at risk can pre-

register to receive warnings by phone, email or text message from an automatic system, 

Floodline. Both warnings and updates about current conditions can carry by local radio 

stations. For example, live updates are carried by the Environment Agency's website showing 

which locations have flood warnings in place and the severity of these warnings. 

 

 

https://en.wikipedia.org/wiki/Radio_station
https://en.wikipedia.org/wiki/Radio_station
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The task of providing warning for floods is divided into two parts: 

 decisions to escalate or change the state of alertness internal to the flood warning service 
provider, where this may sometimes include partner organizations involved in emergency 
response; 

 decisions to issue flood warnings to the general public. 

The decisions made by someone responsible for initiating flood warnings must be influenced 
by a number of factors, which include: 

 The reliability of the available forecasts and how this changes with lead-time; 

 The amount of time that the public would need to respond effectively to a warning; 

 The delay between a warning being initiated and it being received by the public; 

 The need to avoid issuing warnings unnecessarily, because of the wasted efforts of those 
who respond and because a record of false alarms means that fewer would respond to 
future warnings; 

 The need to avoid situations where a warning condition is rescinded only for the warning 
to be re-issued within a short time, again because of the wasted efforts of the general 
public and because such occurrences would bring the flood warning service into 
disrepute. 

A computer system for flood warning will usually contain sub-systems for: 

 flood forecasting; 

 automatic alerting of internal staff; 

 tracking of alert messages and acknowledgements received; 

 diversion of messages to alternates where no acknowledgement received. 

 
FFWS without an effective dissemination of forecasts and warnings, is not achieved. This 
has been helped by the growth in tele-communications, the computer, the IT revolution, and 
increased ownership and coverage of media, such as radio and television, sms, internet. 
Nevertheless it is doubtful whether Internet communication of flood warning information can 
be entirely effective. The elderly and poor members of the community may not have the 
necessary facilities at home and it may also be doubtful whether people will consult Websites 
when a dangerous situation is in place. It must also be remembered that these systems are 
dependent on telecommunications and power links that are themselves at risk of failure 
during flood events. Other general warning systems such as flood wardens and alarm sirens 
should not be abandoned without careful consideration of the consequences and emergency 
services (police, fire service, civil defence) must be involved in communicating flood warnings 
and rescue (Fig 1-10). 
 
 

https://en.wikipedia.org/wiki/Computer_system
https://en.wikipedia.org/wiki/Flood_forecasting
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Fig. 1-7 forecasting lead time and warnings type based on meteorological warning [10] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 1-8 Flood warnings and responses [10] 

 

 



       

         Flood Forecasting Uncertainties 

 

 

 

3
2

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1-9 Arrangement of trigger levels for various flood warning stages [10] 

 

 

1-4-2 Data and technical requirements 
Data requirements relevant to kind of FFS are variety and data rescue due to natural 
deterioration of the storing media  always is vital. The overall data and technical requirements 
are summarized below: 

- Meteorological data  
- System function data 
- Hydrological data 

 
An effective FFS is integrated. So global data requirements without classification included: 
-Real-time and past data_(spatial distribution): measurement of river flow and level, 
telemetric rain gauges network, ground based radars, satellites, airborne sensors, 
numerical weather prediction (NWP) models for quantitative precipitation forecast (QPFs) 
for example and ….(Full details of instruments and discussions about their location and siting can be found in the 

WMO guides referenced (WMO, 1983, 2007, 2008).). 
-Discharge data or water levels and rating curves at appropriate gauged sections in rivers 
and from impoundments. 
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Fig. 1-10 Procedures for issuing flood warnings to rural communities in Jamaica [10] 
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- To produce realistic estimates of spatial flooding, Digital elevation model in risk area, and 
reach is necessary (topographic Information). Satellite sources are available to provide data 

globally at a horizontal resolution of 90 metres with a vertical resolution of ± 2 metres. This 

may not be sufficient for detailed modelling to provide an accurate indication of flood plain 
and channel capacity for hydraulic and distributed models. Data to a resolution of 20 metres 
horizontal and 0.5 metres vertical or better can be obtained from light detection and ranging 
(LIDAR) or side-looking airborne radar (SLAR) surveys (Veneziano, 2002). 
-Soil moisture measurements, flood zoning, reach characteristic, geology, vegetation (land-
use) data, population data at risk area, Inventories of properties at risk area,   and …. 
-Data for calibration during the required lead time of the flood forecasting model; 
- A catchment and reach modelling to predict the effects of structures in river channel, 
reservoir operation, flood plain and flooded areas. 
-Network of stream gauges (simple staff gauges to Doppler or ultrasonic sensing devices 
measuring level or flow or RLS …). The composition of the stream gauge network is 
determined by the requirements for lead time and accuracy (Check points) and also the 
locations where forecasts are needed (forecast points). 
-forecast points: Forecast points are usually coincident with a stream gauge location, partly 
as a result of the modelling approach and partly to give operational verification (Check points). 
Forecast points can also be designated for a specific reach of a river where flood impact is 
potentially high, such as near properties, towns, or agricultural areas (Risk points). 
-Rating curves: at a flow gauging station, an accurate rating curve (stage–discharge 
relationship) should be maintained. Flow gauges at forecast points should have telemetric 
links to the operational control centre. 
- Although traditional techniques for rainfall forecasting are still widely used (cost-effective), 
there are two major benefits for using radar data: a finer spatial resolution of the data field, 
and better real-time data availability because the ability to predict approaching storms before 
they reach the goal area. Also radar has advantages where rain gauges are sparse and/or 
storms are localized. But, if storms are large in area, the gauges (many rain gauges) tend to 
produce more accurate measurements of rainfall than radar. Radar will still give a better 
indication of the spatial distribution that gained by classical methods such as Thiessen 
polygons or Kriging interpolation. 
- Although QPFs have considerable uncertainty, to extend lead time significantly, Numerical 
climate-prediction models at the global model, (RCM) or limited-area climate models (LAM) 
may be utilized, where available, to provide rainfall forecasts as inputs into flood forecasting 
models if sufficient accuracy can be realized (Fig. 1-11 and 1-12). 
- Other data such as location of key transport, power and water supply infrastructure, 
systematic post-flood damage assessments and … 
- Above data such as high-resolution DEM data can be linked to a GIS to provide visualization 
of flood inundation extent and flood plain infrastructure.  
 



       

         Flood Forecasting Uncertainties 

 

 

 

3
5

 

To combine the information in useful format, and DSS to producing forecast details with 
guidance and map forecasts showing flood inundation in real time. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1-11 Schematic for the first option of Global Hydrological Forecasts-GHF-1 

 

 

1-4-3 Infrastructure 

Before design the FFWS, which should initial be assessed is the capacity of the system for 

flood forecasting and to provide guidance on developing, based on the following topics: 
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Fig. 1-12 GHF based on mesoscale model fields-GHF-2 
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-Technology of data gathering (What kind of information is available to the meteorological 

and hydrological services? Data sources will include the national observation networks, 

weather radar, up atmosphere stations and also access to international data, and weather 

satellite information. What is the status of the hydrometric network (rain gauges and water 

level detectors) that could be used in a forecasting system? 

-Skills of flood forecasting staffs and modellers. Or what skills are necessary for the adequate 

development of a flood warning system? 

-Methods and equipments of communication and warning system.  

-What are the requirements of the end-users of flood warning information? [10]. 

-What are the arrangements for flood forecasting, and which government services are 

involved? Significant differences in the approach to meeting forecast needs occur when a 

single authority has responsibility (for example the meteorological service), or when it is 

divided between agencies (most often between the meteorological service and the river 

management agency) [10]. Or is the flood forecasting operation linked to surrounding 

countries, especially where shared river basins are concerned? [10]. 

Moreover, in general the basic physical requirements within which the service and its staff 

need to operate are: 

- Buildings, alternative site for a backup operations centre and duty rosters belonging to their 

parent government department; 

- Operations room with adequate space for desks, computer terminals and work-stations, 

data display facilities, and printing and copying equipment; 

- Separate room should be provided for computers and telemetric equipment (air condition, 

controls to the entry of dust and dirt, operator safety,..); 

- Direct line telephone, fax and Internet access for the head of operations; 

- Briefing room with radio and television transmission facilities for contact with the media; 

- Security arrangements consideration for duty staff; 

- Equipment should be supplied with uninterruptible power supply (UPS) devices and standby 

generator facilities (automatically be set up and lighting to the units perhaps many hours); 
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- The flood forecasting and warning centre, should not be at risk of floods; 

-Human resources: formal, adequate and suitably qualified staffing and experts and duty 

officers for such operations of flood forecasting and warning units and permanent flood-risk 

management (PFRM) is imperative. Also many of the temporarily assigned staff came from 

disciplines outside hydrology and river engineering; 

-General requirements for staffing: There is no fixed optimum pattern to follow, but the 
following capacities must be available: Hydrological forecasters and modellers, 
meteorological forecasters, IT and operational technical communications specialists, 
communications with the media, public and Government, management and administration, 
research and development. 
 

1-4-4 Operational concept 
The concept of operations (system efficiency) is the defined interaction between the users, 
the forecast technology and the data. It defines how the operational forecast service will 
function to assure that users’ requirements are met. There are many factors for this aim but 
the following factors should be mentioned [10]: 

a) Forecast centre mission 
There are many users (emergency services, civil defence, contingency managers, the media, 
agriculture, industry, hydropower organizations, water resource and flood control managers, 
water transportation and municipal water supply organizations) that have different 
requirements for forecasts and information that to be specified by individual arrangements 
and service agreements. 

b) Communications 
This comprises data receive and transmit tools which will include for example arrangement 
with telecommunications office and other authorities. 

c) Operation of the data gathering network 
In this case, concern is about all sources of data needed for forecasts, such as gauges, radar 
network and satellite downlink products to be received. 

d)  Forecast centre organization 
Duty of the staff must be define, fore instant, how many technicians or professionals will staff 
the centre during routine and emergency operations. The educational and training 
requirements and the timing arrangements and deadlines for dissemination of staff need to 
be well defined. Also it is useful to maintain examples of all output products in the Operations 
Manual both for training purposes and for reference when queries from users arise. 
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1-5 Socio-Economic benefits of FFWS 
Although these benefits of FFWS are very diverse, current knowledge about warning benefits 

is limited, indicating a need for further research especially as the benefits of flood warnings 

are likely to increase. Moreover the magnitude of benefits depends significantly upon the 

public’s response to flood warnings in residential sectors as a warning response 

(sandbagging, evacuation,..) and efficiency of system in general (lead time especially). Most 

is known and capable of monetary estimation in the category of primary, tangible benefits 

(buildings, animals,…), particularly in the residential sector where data on warning response 

variables is accumulating [Dennis Parker, and et al, 2005]. 

  
Case study 

“Planning for sandbagging as a response to flooding: a tool and case study” 

This paper presents a simulation tool that allows local councils, emergency services 

organisations, and communities to explore the viability and details of sandbagging depots 

and their operation as one of the components in a preparation and response strategy to 

flooding. The tool was developed in collaboration with Victorian State Emergency Services 

and the City of Port Phillip Council. The focus of this case study is the coastal suburb of 

Elwood, which has a canal through its centre and a worrying increase in damaging flash 

floods. The tool that was developed is suitable for use in any location, once relevant 

geographical information and flood maps are supplied [2].  

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/267639313 
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Chapter 2        Flood Forecasting Techniques 

Computer, Radar, GIS, Satellite, IT 

For 

the next generation of hydrological modellers in Flood Forecasting, F.Daliri, 2019 

 

2-1- FF techniques classification 

Daliri [2], listed all flood control techniques, including mechanical and biological as well as 

systematic planning such as planning flood risk management systems, flood forecasting and 

IFM_IWRM. Floods can be of many different types and scales and this drives differences in 

the architecture and implementation of flood forecasting systems [1]. Plate (2009) 

distinguished five different types of landscapes with characteristic flooding behaviour: 

a) high mountain ranges, which are mainly subject to flash floods and geophysical flows, 

b) foothill areas where floods are caused by intense rainfalls and snowmelt, and where 

inundation is widespread,  

c) large floodplains where velocities are low and floods occur because the landscape is 

unable to quickly pass all the incoming flows, 

d) urban areas where flooding is generated by inadequate sewer capacity and numerous 

barriers to flow, and  

e) coastal areas where flooding is typically caused by cyclones and storm surges. 

The mani components of an FFWS in riverian floods, (Fig. 1-6) include: 

- Data collection (rainfall, water level, DTM, …) 

- Data analysis (format, missing, trend, …) 

- Data transmission  

- Flood forecasting (river elevations, inundation extent, and time of occurrence for peak 

discharges with lead times), (Fig 2-1 and table 2-1). 

- DSS and warning outputs dissemination to user 
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Fig. 2-1 Classification of methods used for Flood Forecasting based on model structure and type (WMO, 2011,[1]) 

 

Table 2-1 criteria for model classification 
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Also, According to the various concepts used in developing models, the models or methods 
maybe classified into five categories: 

 A) Based on correlation/coaxial diagrams between two variables or even more; 

 
B) Mathematical equations developed using regression/multiple linear regression 
techniques which combines independent variable with one or more than one 
variable; 

 C)Hydrological models 

 c.1 Rainfall run-off model 

  i) Lumped 

  ii) Quasi-distributed 

   iii) Distributed 

  c.2 Routing techniques 

   i) Lumped, & Distributed; 

 D)Hydraulic models 

  d.1) Dynamic Wave routing; 

 E)Data driven hydrological models 

  i) Artificial Neural Networks 

  ii) Fuzzy expert system design for FF 

  

iii) ANFIS (Adaptive Neuro-Fuzzy Inference System) models 
 

 

Furthermore, models may be classified depending upon the way catchment processes are 

represented – deterministic, data driven and Ensemble models: 

- Deterministic models 

The process of transformation of rainfall into runoff in these models, is time dependent and 

is a function of the physical characteristics of catchment and rainfall. For example, 

deterministic rainfall-runoff (RR) models include components for the various hydrological and 

related processes, such as precipitation, infiltration and soil moisture dynamics, 

evapotranspiration, runoff generation and streamflow hydraulic or hydrologic routing. flow in 

natural channels or urban area during floods is typically unsteady, non-uniform, and includes 

interactions with tributaries and bifurcations with varying cross-sections and roughness, 
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 Groundwater seepage and sea coastal effects. Flood routing in such channels is most 

commonly accomplished by solving the full or simplified St. Venant equations to obtain flow 

depth and velocity as a function of space and time throughout the system [2]. 2D models are 

quickly becoming the standard of practice in many places (e.g. Jones et al. 2002), while 3D 

models are becoming increasingly applied in specific scenarios (e.g. Biscarini et al. 2010). 

However, the increased complexity of 2D and 3D models requires high-quality data and 

modelling expertise to produce accurate results [1]. 

- Data-driven models 

Data-driven models are often referred to as black-box models, because they depend upon 

the statistical or cause–effect relationships between hydrologic variables without considering 

the physical processes that underlie the relationships (Luchetta and Manetti, 2003). Data-

driven models can include stochastic models [7,8], (e.g. Regression models, Time- Series 

models, and Bayesian models) and nonlinear time series models (e.g. Artificial Neural 

Network models, Fuzzy Systems, and adaptive neural Fuzzy Inference Systems-ANFIS) that 

require extensive and high-quality time series of hydrologic data. 

Practical applications of the data-driven models for flood forecasting are still lacking chiefly 

due to the two reasons: (i) data-driven models do not account for the changing dynamics in 

the physics of the basin over time (i.e. aggregation/ disaggregation/ changing land pattern); 

and (ii) the parameters of data-driven models are completely dependent on the range of the 

data (i.e. maximum and minimum) used for calibration. As a result, process-based 

hydrological models have traditionally dominated FF [1], [2]. 

- Ensemble forecasts 

In ensemble or probabilistic prediction systems (EPS), a set of possible future states of the 

variable are provided through small changes in the initial conditions, different representations 

of the physical processes, and changes in parameterization schemes and solution schemes 

or using ensemble weather predictions (numerical weather predictions-NWP) as inputs 

(Thiemig et al. 2015). Rather than providing a single deterministic forecast, the EPS offers 

an ensemble prediction of hydrological variables, such as streamflow or river level, allowing 

the identification of the most likely scenario, that provide the added value to flood forecast for 

the issue of early flood alerts with more confidence. An EPS, in a way, consists of the 

propagation of uncertainties through the forecasting system. Notwithstanding the other  
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uncertainties, prediction of rainfall is often the dominant source of uncertainty in FF. An 

example of operational ensemble FF systems is the European Flood Awareness System 

(EFAS) which makes use of multiple meteorological forecasts to produce probabilistic flood 

forecasts with estimates of uncertainty (Thielen et al. 2009). 

Selection of a particular method or model (Table 2.2), and its accuracy for a given site is 

largely governed by data availability; knowledge of forecaster, forecasting objective, 

institutional capabilities, experience with the basin or system characteristics. Before selection 

of an appropriate method, at first modeler must design quality and quantity conceptual model 

of the system [2]. Details of the modeling process, described in text book of Water and 

environmental modeling (flood control-water supply-groundwater management) by auther, 

2014 and 2019 (Fig 2-2). In following sections, some FF techniques described. 

 

2-2- FF techniques 

2-2-1-Correlation/Co-axial diagrams 

2-2-1-1- Runoff from small watersheds 

The coaxial correlation method [9] to predict runoff from small watersheds, is a multi-graphical 

Approach, and the physiographic, hydrologic, geographic, and geologic characteristics are 

considered. Using this method, however, these characteristics are combined into the 

variables under consideration and are evaluated and related from a statistical standpoint. 
Investigation of the results from the hydrologic viewpoint should substantiate the results if the 

method is valid. This formula should include the following parameters:  

-Volume or height of precipitation, and duration,… 

- antecedent_ precipitation index (API), basin recharge, … 

-week of the year, … 

The application of this technique (Fig.2-3), allows a graphical representation of the 

relationships between several variables, all of which influence some dependent variable of 

interest. 
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Fig. 2-2 Process for developing a flood forecasting model (WMO, 2011,[3]) 
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Table 2-2. Operational Flood Forecasting Systems in use by selected agencies in World [1] 
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Fig. 2-3 A simple coaxial gragh for Ontario to Flood Forecasting [9] 

 

Utilization the digital computer under the direction of a numerical opjtimization technique 

should make the coaxial correlation method more promising to minimize the error term of the 

final results for specific watersheds (Fig 2-4). 

 

 

 

 

 

 

 

 

 

Fig. 2-4 A semi- sophisticated coaxial gragh to Flood Forecasting, Webster,1973 [9] 
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2-2-1-2- Flood routing 

Forecasters can develope a large set of correlation, and coaxial diagrams which display the 

pattern of correlation exhibited by two or more variables (water level, travel time, discharge, 

rainfall, ...). Such charts are relatively less complex, and are quite popular among its users. 

Nevertheless, they need periodical updating to account for constant alteration in catchment 

characteristics and river regime. One out of several such diagrams used in Iran and India is 

shown here. When a number of tributaries affect the water level at the forecasting station, the 

variation in water level at base station (base station is a location upstream of forecast station) 

on the main river as well as base stations on the tributaries considered to prepare co-axial 

diagrams. One such diagram developed for formulation of forecast at Patna (Gandhighat) on 

river Ganga is shown in Fig.2-5. In this diagram, water level fluctuation at Patna takes into 

account the variation in water level at Buxar on river Ganga; Darauli on river Ghaghra; 

Chopan on river Sone; and Rewaghat on river Gandak. 

This concept can also be extended to account for rainfall in upland area. Fig.2-6 is for 

formulating the forecasts at Khowang on river Brahmaputra considering rise and fall in water 

level at Naharkatia site. 

 Additionally, rainfall observation at Naharkatia is also accounted for to incorporate its likely 

influence to the water level at Khowang. 

However, these charts carry limitations in that they provide only peak flow or water level 

information, and drop no hint about the shape of likely flood hydrograph at forecast site. This 

aside, there is absence of statistical test to measure the strength of correlation between 

dependent and independent variables. Nevertheless, such diagrams are proved quite useful 

in absence of fully developed network of hydro-meteorological stations; skilled personnel to 

operate sophisticated models; and seamless flow of data from remote locations to forecast 

centre. 
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Fig. 2-5 Correlation graph for site PATNA to flood forecasting in real time 

 

 

 

 

Fig.2-5 
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Fig. 2-6 Correlation graph for site Khowang to rainfall and flood forecasting in real time 

 

2-2-2-Mathematical equations 

2-2-2-1- Regression equations 

This method defines relationship mathematically among variables by 'regression/multiple 

regression techniques'. The strength of such pattern is easily determined by correlation 

coefficient, 'r', and thus subjective judgment of a person in drawing a best-fit line is eliminated. 

 Mathematical equations offer much ease in calculation of dependent variable, and in turn 

speed up forecast process. Chart at Fig. 2-7 displays an equation that estimates water level 

at downstream location, Mahemdabad, Gujarat with change in water level at upstream site.  

 

 

Fig.2-6 
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Fig. 2-7 Correlation equation to estimates water level at downstream location in real time 

A respectable degree of r2 as 0.9854 is achieved by introducing a time lag/shift of 4 hrs 

between two sets of data. The arrival of this time lag is based on output obtained through 

cross-correlogram technique or travel time. With no time lag, two sets of data are poorly 

correlated. 

Another approach is to develop a mathematical model relating forecast station water level 

with water level of a tributary joining in-between base and forecasting station, and of base 

station. This method is elaborated by an example comprising three stations. Location of 

stations may be visualized as shown in Fig.2-8. Table 2-3 lists water levels observed at these 

locations. 

 A linear multiple regression equation with X1 as dependent variable and X2, X3 independent 

variables can be expressed as below. 

   

 

 

 

 

Fig.2-7 
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Fig. 2-8 Location of base (x3) and frecasting (x1) and tributary (x2) stations 

 

Table 2-3. water levels observed at x1,x2 and x3 station 

 

The coefficients a, b and c are estimated by the method of least square or of Matrix [A] 

containing all three unknown coefficients is solved by multiplying [R]-1 matrix with [X1] matrix. 

[A] = [R]-1 [X1] 

 

 

Fig.2-8 
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Results as bellow: 

X1 = - 223.017 + 2.71 X2-0.0003 X3 

Correlation coefficient, r for the defined equation is 0.99 suggesting higher degree of 

correlation among variables and can be adopted as forecast model. 

Standard Deviation (SD) and S_est are needed to estimate r2. To determine SD, reader may 

consult flood frequency module. S_estis determined by.(Xi, obs- Xi,comp)2/(n-2). Finally, 

r2 is determined by following equation: 

 

Equation of the type X1 = a . X2 b1. X3 b2 .. can also be evaluated by converting them into 

a linear form by logarithmic transformation. Secondly, in the current example, two 

independent variables are water level. Reader can substitute it by other variables or add more 

variables to this equation. Solution of coefficients follows similar steps. 

Another relationship derived by multiple regression technique determines the change in water 

level at forecast site bases on the variations recorded at two upstream sites, commonly 

known as base stations. While preceding equation relates water levels of two sites, this 

equation correlates variation in water levels at different sites. 

2-2-2-2- Mathematical model based on Muskingum method 

According to Muskingum Outflow Equation (after Hydrology by H M Raghunath), outflow and 

inflow at two time steps, (t+1) & t related to by equation (I). 

   

For a few initial time steps of observed inflow hydrograph, such as I1, I2 ---, I4, and O1, O2 -

--, O4 of outflow hydrograph, a set of equations, with the help of eq. (I) can be written as 

below: 
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Now, assuming that discharge and water level curves at either location a straight line; and 

denoting water level at upstream and downstream sites as H & G respectively (Fig. 2-9), we 

can say that: 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

Fig. 2-9 Stage-discharge rating curves assumed linear 

 



       

         Flood Forecasting Uncertainties 

 

 

 

5
6

 

Replacing discharge component of equations (II) & (III) with this, we get: 

 

 

 

Equation (VI) combines change in water level at downstream site with changes in water level 

at upstream site. At this stage, reader may please note thatsubscripts 4, 3, 2 in above 

equation denotes difference water level at time (t+1), t & (t-1) at respective stations. A set of 

equations,like this, may be obtained by suitably picking up data from observed hydrographs 

to estimate coefficients x1, x2, & x3 by matrix method as elaborated earlier. While doing so, 

it is highly recommended to check'r2' value to ensure that model is worth for the purpose it is 

defined. This sort of equation can be developed for rising and falling stages separately. 

Further refinement is possible by dividing stages into two or three ranges with each range 

represented by unique equation (please see Fig.2-7). Additionally, equation (VI) considers 

only one station/site in the upstream. In case, water level at downstream site happens to be 

affected by more than one site, a modified Muskingum equation can be written as: 

 

Where, H, H', H'' represent water level at three upstream sites. Number of equations formed 

in this manner need to be solved for coefficients by matrix method. The steps involved in the 

process with same set of data used in previous example are illustrated below: 

Step 1 

With two independent variables (water level at two upstream sites) and one dependent 

variable (water level at forecast station), equation (VI) takes following form. 
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Step 2 

With known water levels at respective sites (Fig. 2-8 & Table 2-3), a set of values each 

representing change in water level at various time interval is tabulated next in matrix form: 

 

 

 

 

 

 

 

 

 

Values of coefficients are determined by solving the matrix by an equation given below. 

 

With coefficients indicted in above table, a mathematical equation takes following form for 

use in flood forecast: 

 

 

While seeking to define an equation by this approach, caution is needed toward the inherent 

assumption associated with the method, i.e. a plot between water level and discharge should 

closely follow a linear trend in that range for which user/forecaster intends to relate 

parameters. 
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A comparison between observed vs. computed water level at X1 and relevant statistical 

parameters which measure the strength of model are presented in Table 2-4. 

Table 2-4 Observed vs. computed water level at X1 and relevant statistical parameters  

 

 

 

 

 

 

 

 

 

 

2-2-3-Hydrological Models 

2-2-3-1-Rainfall-runoff models 

a)Lumped models (CWC in 1989, p 239-244) and [10,11,12,13] 

we can analysis flood hydrographs at a specific watershed to generate a unit hydrograhp with 

t-hr duration (Table 2-5) (based on storm duration steps) and generate or calculate losses 

based on rainfall-runoff analysis. As per the report received at 1900 hrs on 13th September, 

the average rainfall observed at different hours (Table 2-5) was as follows in the schematic 

basin (Fig. 2-10). 

wherein 3-hr duration unit hydrograph (owing to 1mm effective rainfall over the 

basin/catchment) for a basin area of 8570 sqkm is given along with mean rainfall events over 

the basin. The base flow at the beginning of storm is 300 cumec.  
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                   Fig. 2-10  

 

 

 

 

 

 

 

 

 

Table 2-4 Unit hdrograph and rainfall amount in real time 
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Additional information available is a diagram, Fig. 2-11 (based on historical data) correlating 

total rainfall and runoff in varying base flow conditions (shown right). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2-11 Correlating total rainfall and runoff in varying base flow conditions 

 

 

Fig.2-11 
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Referring to this diagram, runoff against a base flow of 300 cumec and 54.3 mm rainfall is 

14.5 mm implying a loss of 39.8 mm during rainfall period. Form this, it is gathered that there 

is a loss rate of 4.43 mm per hour. 

This point beyond, a model is developed in HEC-HMS by keying in information gathered as 

above (Fig.2-12). Basin in the model is represented by an element 'subbasin1'. This element 

hosts basin information; loss mechanism;transformation process and base flow contribution 

besides observed hydrograph at terminus point, if available (Fig.2-13). 

Convolution of UH can be attempted in MS excel also. HEC-HMS software can be downloaded by visiting 

site http://www.hec.usace.army.mil/software/hec-hms/download.html , and is available for free. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2-12 Main window HEC-HMS 3.5 

 

Fig.2-12 
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Fig. 2-13 Data entry in HEC-HMS 3.5 

A elevation vs. discharge rating is also fed in the model, based on geometry data field and 

hydraulic studies in the interest reach to produce water level corresponding to variation in 

discharge at terminal location or in the interest rech.  

In Fig 2-14 and Table 2-5 shows a set of output information that is quite handy for issuance 

of forecast ahead of its actual occurrence. Even though the ordinate's interval is every three 

hours in the current listing, user can elect appropriate interval to extract information of his 

desire. 
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Fig. 2-14 Results for run1 at interest outlet in HEC-HMS 3.5 

 

In above example, there are some challenges, when use a lumped model: 

-A risk of overestimating the flood, when its convolution is based on average areal rainfall in large basins. 

-Ignores likely impact of channel storage on flood attenuation 

 

 

 

 

 

 

 

Fig.2.14 
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Table 2-5  
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b)Quasi-distributed models 

The set of data inputted here remains the same as for previous case. Following illustration 

demonstrates, with the help of Fig. 2-15, application of UH in conjunction with MUSKNIGUM 

routing method to estimate magnitude of flood and time of its occurrence. 

 

 

 

 

 

 

 

 

 

 

 

 According to procedures illustrated in earlier example, UH considered for analysis represents 

an area of 8570 sqkm, and its convolution is based on average areal rainfall over the region. 

This concept of convolution of UH runs a risk of overestimating the flood because of departure 

from one of its fundamental assumption that rainfall is uniformly distributed over the region 

for a specified time. This may not be true for an area as large as 8570 sqkm. Additionally, 

this approach ignores likely impact of channel storage on flood attenuation. In order to adhere 

to this basic assumption, UH concept is usually applicable for an area less than or upto 5000 

sqkm. We can overcomes this violation by sub-dividing the entire basin into three sub-basins 

A, B & C of area 2040 sqkm, 3470 sqkm and 3060 sqkm respectively, and assuming 

contribution of rain gauges a, b & c to respective sub-basins only. Accordingly, ordinates of 

UH has also been altered by a ratio between area of the respective part to the total area. 

Routing of flow along the reach is done by MUSKINGHUM method.  

Fig.2-15 
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Parameters K, X have been taken from the example and its stability is ensured by adhering 

to constraint, such as 2KX should be less than T.  

Additionally, equal contribution of 100 cumec as base flow from three parts is assumed. A 

basin delineated into three parts with two routing reaches is presented below. As discussed 

earlier, rainfall recorded at rain gauge 'c' contributes to sub-basin 'C', and therefore, its flood 

appears at basin outlet having propagated through reach -1 and reach -2. Similarly, sub-

basin 'B' receives rainfall observed at rain gauge 'b', and resulting runoff travels through 

reach- 2 only. Sub-basin 'A' responds to rainfall at 'a', and its effect is visible at outlet (no 

routing is involved in this case). 

In agreement with discussion in preceding paragraph, UH for each basin & Muskingum 

parameters for two reaches and rainfall excess at stations are given in Tables 2-6, 2-7 and 

2-8. 

A model (Fig. 2-16) duplicating three sub-basins and its reaches is created in HEC-HMS 

followed by data entry. HEC-HMS generated runoff at Outlet (Junction-2) appears at Fig. 2-

17. Also shown there is change in water level according to fluctuation in discharge at this 

point of basin. Option is also available to mark warning level to distinguish critical period when 

there will be heightened risk because of swelling river. 

 

 

 

 

 

 

 

 

 

 

Fig 2-16 
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Table 2-6  

 

 

 

 

 

 

 

 

Table 2-7 

 

 

 

 

 

 

Table 2-8 
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Table 2-8 lists ordinates of flood hydrograph against time and compares with the 

observations. Options are also available in the HEC-HMS to observe resulting hydrographs 

for each and every element shown in model. 

 

 

 

 

 

Fig. 2-17 
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Table 2-8 Time-series results for interest points 
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Points to note: 

- Regardless of duration of rainfall and its distribution over time, UH of known duration, 

say t-hr is to be fed in the HEC-HMS keeping its ordinates spaced at t-hr apart. For 

example, if UH of 1mm rainfall derived is of 3hr duration, ordinates of UH must be 

entered at 3hr interval. Software automatically converts this UH to duration according 

to rainfall distribution over catchment. This process rid us of steps needed for 

conversion of a UH from one duration to another. 

- A relationship between stage/water level and corresponding discharge at forecast 

station is best represented by a rating curve or a power equation of the type Q = c*(G-

G0)^b. Caution is required here to feed latest rating curve of the site in the software; 

which is best estimate of the prevailing river regime. Secondly, fitting a rating curve 

does need some technical skill. HYMOS software performs this task with ease. 

 

c)Distributed models  

Forecast estimated by applying hydrological models such as one presented in preceding 

paragraphs tends to vary widely from real values, where assumptions in unit hydrograph or 

routing models are violated by prevailing hydro-meteorological conditions over catchment. 

For example, rainfall is non-uniform over the basin and time distribution [10]; it is not 

stationary and moving across the basin; rainfall is concentrated in one pocket and leaving 

holes elsewhere. Apart from this, soil type and land-use pattern also vary over the 

catchment/basin that govern the rising and falling limb of resulting hydrograph. In lumped 

model, these characteristics are represented by a single SCS CN [11,12] applicable for entire 

area under study. Scenario,where spatial and temporal variations are dominating factors, 

demands application of distributed model to accurately capture the basin response. 

Presented here is a distributed model developed and analyzed using Water Modeling System 

(WMS) and HEC-HMS. In this model, WMS software first delineates a watershed for an outlet 

point selected by the user, and thereafter creates grid (Fig. 2-18). 

For each grid, it determines CN values according to its soil type and land-use cover layers by 

GIS tools. Once land component is over, software prepares a gridded precipitation database 

based on rainfall input provided by the user. 
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A set of these gridded information are subsequently exported to HEC-HMS for simulation run 

or we can continue in WMS. HEC-HMS calculates the rainfall excess and route it to outlet by 

MODCLARK method for example (Fig. 2-19). A couple of screenshots display model set-up 

and results obtained at the end. WMS software can be downloaded by visiting 

site http://www.aquaveo.com/downloads. 

2-2-3-2- Routing techniques (a)Lumped & b)Distributed models) 

a)Lumped models  

The Muskingum method of stream flow routing (Fig 2-20) is most frequently used because of 

its simplicity, as it works with known inflow hydrograph and some fitted parameters without 

seeking additional information. However, in order to get high degree of accuracy, this method 

should be for steady gradually varied flow and not in cases where reach is often affected by 

backwater or unsteady flow condition. The two fundamental equations for stream flow routing 

by Muskingum method are storage equation and Continuity Equation. 

 

Fig. 2-18 
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Fig. 2-20 Prism storage and Wedge storage in a river reach 

 

 

 

Fig.2-19 
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Combining these two equations we get: 

 

 

 

 

 

 

The coefficients are connected by the relation: 

Co + C1 + C2 = 1 

S = Prism storage + Wedge storage 

 S = K.Q0 + K.X.(Q1-Q0) 

Where,  

S = Total Storage 

K= 

A constant in time unit denotes the time of travel of flood wave through the 
reach. So, if flood wave velocity or celerity is C, C equals L/K, where L is 
reach length. 

X =  
A dimensionless factor which defines the relative weights given to inflow and 
outflow in determining storage. (Mostly varies between 0.1 & 0.3 and ranges 
between 0 & 0.5) 

Q1 or It, t+1 =     Inflow rate at time t and t+1 , t 

Q0 orOt, t+1 =     Outflow rate at time t and t+1, t 

Equation (I) with known coefficients, Co, C1& C2 computes outflow with inflow and outflow 

at time t & t+1. However, accurate estimation/selection of K, X,  t and subdivision of river 

reach is central to successful Muskingum routing, so merit due attention at the time of their 

estimation. 
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Determination of K and X 

With Muskingum routing, the distance step, x, is defined indirectly by the number of steps 

into which a reach is divided for routing. 

We will dig into example data set presented below (Table 2-9) to estimate these values. Later 

with HEC-HMS, optimized value for these parameters will be extracted. As with other 

models, x/t is selected in a manner to approximate c, where c = average wave speed 

(also celerity) over a distance increment x. 

If total reach length is L, and travel time is K, Wave speed, C is: 

c = L/K = L/n.t 

If there are n sub-reaches, and each sub-reach requires t time for discharge to flow past, 

 K = n.t 

So, the number of steps, 

n =K/t. 

For current example, distance between two stations is around 112 km;an estimated value of 

K is assessed about 34 hour with table 2-9 (time interval between inflow peak and outflow 

peak- a rough estimation for K to begin with). Inflow flood hydrograph ordinates are at 2 hours 

interval, the routing reach should be divided in 17 steps, i.e. 34/2 to get the outflow 

hydrograph 112 km below. This leads to less attenuation as compared to routing carried out 

in a single step for the entire reach. 

Secondly, the parameters K, X and computational time step ?t must also be selected in a 

manner so as to ensure that the Muskingum model/its coefficients must be rational. This 

implies that the parenthetical terms of the coefficients C1, C2 and C3 must be non- negative. 

To maintain this, values of K and X must be so chosen so that the combination falls within 

the shaded region shown below: 
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Table 2-9 Time-series results for interest points 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bold value indivates, peak flow 
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In other words, K, X & t must satisfy a condition given by: 

2KX t 2K(1-X) 

Parameters chosen in violation of this condition produce an un-stable solution and HEC-HMS 

will prompt the user in its message box accordingly.Against this backdrop and selected K 

and Dt, estimated X is 0.03 (t/2K). 

Having defined Muskingum parameters, application of HEC-HMS in routing a reach by 

Muskingum method is demonstrated. A displays the river network and its feeding boundary 

developed using Geo-HMS extension installed on ArcView software, and a model set up in 

the HEC-HMS. Routing parameters for reach entered in HEC-HMS is exactly the same as 

deliberated above (Fig.2-21). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2-21 
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After first 'Run', plots the simulated result against observed discharge at downstream end 

along with variation in water level (water level vs. outflow relation used here is made-up one, 

and is used for demonstration purpose only). The water level profile can be picked up for 

forecast purpose. As shows in Fig. 2-22 estimation value of debit of peak flow in outlet is 

3747 cms against in observed hydrogragh is 3930 cms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

At this stage, HEC-HMS offers another useful tool to optimize Muskingum parameters having 
finished first 'Run'. Fig.2-23 displays initial and optimized values of Muskingum parameters 
along with simulated and observed outflow, which is a slight improvement upon first 'Run'. 
Reader may adopt this new set of parameters to finalize their model for forecasting trial.  

 

Fig. 2-22 



       

         Flood Forecasting Uncertainties 

 

 

 

7
8

 

In this situation, estimated value and observed value close to each other. This process 
(Sensitivity analysis) can be do by calibration, verification and validation process that 
describe in flowing sections [2]. 

 

Fig. 2-23 Sensitivity analysis to optimize K & X estimation in Muskingum parameters 

In doing so, it must be noticed that river regime is not a fixed entity over time and tends to 
exhibit continual changes in its course, geometry. That is why it had better develop a model  
based on flood events occurred recently or updating models (2-3), and discard earlier model 
to eliminate possibility of large variation in forecast value. 
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b)Distributed 

Muskingum method operates with steady or gradually varied flow, and does not reveal any 

information in between the base and forecast station. That is why it is also termed as 

'Lumped model'. If the forecaster intends to gather water profile and its propagation along 

river reach, distributed models, such as Muskingum-Cunge, or Kinematic Wave could be 

alternatives. keen readers may refer to 'Technical Reference Manual' of HEC-HMS or [2] for 

more information about it. 

   2-2-4-Hydraulic Models 

   2-2-4-1- Dynamic wave routing technique 

HEC-RAS software is a one-dimensional flow hydraulic model designed to aid hydraulic 

engineers in channel flow analysis and flood-plain determination to perform a unsteady flow 

simulation for flood forecasting with use GIS RAS mapper for flood delineation. This software 

is available for free, from web-page: 

 http://www.hec.usace.army.mil/software/hec-ras/hecras-download.html . 

Hydraulic routing employs the full dynamic wave (St. Venant) equations. These are the 

continuity equation and the momentum equation, which take the place of the storage-

discharge relationship used in hydrologic routing. The equations describe flood wave 

propagation with respect to distance and time. Henderson (1966) rewrites the momentum 

equation as follows to 1-D: 

 

Where, 

Sf   = friction slope (frictional forces), in m/m; 

So   = channel bed slope (gravity forces), in m/m; 
2ndterm = pressure differential; 
3rdterm = convective acceleration, in m/sec2; 
Last term = local acceleration, in m/sec2 
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Also, we can rewrite it: 

 

Assumptions 

The assumptions given bellow for all hydraulic models (one-dimensional flow, fixed channel, 
constant density, and resistance described by empirical coefficients) apply to dynamic 
routing. It is also assumed that the cross sections used in the model fully describe the river's 
geometry, storage, and flow resistance. The full dynamic wave equations are considered to 
be the most accurate solution to unsteady, one dimensional (1-D) flow, but are based on the 
following assumptions used to derive the equations (Henderson, 1966): 

 Velocity is constant and the water surface is horizontal across any channel section. 
 Flows are gradually varied with hydrostatic pressure prevailing such that vertical 

acceleration can be neglected. 
 No lateral circulation occurs. 
 Channel boundaries are considered fixed and therefore not susceptible to erosion or 

deposition. 
 Water density is uniform and flow resistance can be described by empirical formulae 

(Manning, Chezy) Solution to the dynamic wave equations can be divided into two 
categories: approximations of the full dynamic wave equations, and the complete 
solution. 
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Fully Dynamic Wave Routing solution 

Complete hydraulic models solve the full Saint Venant equations simultaneously for unsteady 

flow along the length of a channel. They provide the most accurate solutions available for 

calculating an outflow hydrograph while considering the effects of channel storage and wave 

shape (Bedient and Huber, 1988). The models are categorized by their numerical solution 

schemes which include characteristic, finite difference, and finite element methods[2]. 

The finite difference method describes each point on a finite grid by the two partial differential 

equations and solves them using either an explicit or implicit numerical solution technique. 

Explicit methods solve the equations point by point in space and time along one time line until 

all the unknowns are evaluated then advance to the next time line (Fread, 1985). Implicit 

methods simultaneously solve the set of equations for all points along a time line and then 

proceed to the next time line (Liggett and Cunge, 1975). The implicit method has fewer 

stability problems and can use larger time steps than the explicit method. Finite element 

methods can be used to solve the Saint Venant equations (Cooley and Mom, 1976). The 

method is commonly applied to two-dimensional models. 

Limitations 

The major drawback to fully dynamic routing models is that they are time-consuming and 

data intensive, and the numerical solutions often fail to converge when rapid changes (in time 

or space) are being modeled. This can be addressed by adjusting the time and distance steps 

used in the model [2]; sometimes, however, memory or computational time limits the number 

of time and distance steps that may be used. Additionally, fully dynamic one-dimensional 

routing models do not describe situations (such as lakes and major confluences) where 

lateral velocities and forces are important. 

  Stability of the model 

 The vital factors which affect the model stability and numerical accuracy are: 

1. Cross Section Spacing 

2. Computation time step 

3. Theta weighting factor 

4. Solution iterations & tolerances 



       

         Flood Forecasting Uncertainties 

 

 

 

8
2

 

Cross sections should be placed at representative locations to describe the changes in 

geometry. Additional cross sections should be added at locations where changes occur in 

discharge, slope, velocity, and roughness. Cross sections must also be added at levees, 

bridges, culverts, and other structures. Bed slope plays an important role in cross section 

spacing. Steeper slopes require more cross sections. Streams flowing at high velocities may 

require cross sections on the order of 30m or less. Larger uniform rivers with flat slopes may 

only require cross sections on the order of 300m or more. 

Theta is a weighting applied to the finite difference approximations when solving the unsteady 

flow equations. Theoretically Theta can vary from 0.5 to 1.0. However a practical limit is from 

0.6 to 1.0. Theta of 1.0 provides the most stability. Theta of 0.6 provides the most accuracy. 

The default in RAS is 1.0. Once the model is developed, reduce theta towards 0.6, as long 

as the model stays stable. The stability problems are due to: 

1. Too large time step. 
2. Not enough X-sections 
3. Model goes to critical depth - RAS is limited to subcritical flow for unsteady flow 

simulations. Bad d/s boundary condition (i.e. rating curve or slope for normal depth). 
Bad X- section properties, commonly caused by: levee options, ineffective flow 
areas, Manning's n values, etc. 

If this happens, note the simulation time when the program either blew up or first started to 

oscillate. Turn on the "Detailed Output for Debugging" option and re-run the program. View 

the text file that contains the detailed log output of the computations. Locate the simulation 

output at the simulation time when the solution first started to go bad. Find the river station 

locations that did not meet the solution tolerances. Then check the data in this general area. 

Calibration of the Model 

The model can be calibrated by changing the hydraulic parameters. Open Unsteady 

flowanalysis>Options>Computation options and tolerances. The theta (implicit weighing 

factor) value in hec-ras can be changed from 0.6 to 1 and repeated simulations can be run 

with changed iterations and Changed Manning's N to validate the actual results. Some 

Manning's N values have been cited from the literature, but the actual values are to be 

calibrated to have the model match with the real conditions[2]. We can also set the initial 

conditions during simulation and write detailed log output for debugging by clicking options> 

Output Option[2]. 



       

         Flood Forecasting Uncertainties 

 

 

 

8
3

 

Executing the Model 

The present simulation yielded very fitting results as regards discharge, but the water level 

difference remained at 22cms (529.37m simulated against 529.15m obs) (Fig 2-24). The 

simulated matching results may be because of the single reach simulation, recent observed 

X-sections and no other streams joining the reach except at Sangam. Further, this might have 

accrued due to the exact observed data input at the X-section points. 

It is to note that the simulated value is 1674.38 m3/s against the actual observed value 

of 1674.34 m3/s at Kurundwad river (X-section_1)(0800 hrs on 2nd July, 2006, i.e, end of 

simulation period). The simulated water level is 529.37m against observed value 

of 529.145 m that mentioned above. 

 

 

Fig. 2-24 Result of the simulated water level in Hec-Ras 4.1.0 
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2-2-5-Data driven hydrologic models 

Sometimes,it is argued that deterministic, reductionist models are inappropriate for real-time 

forecasting because of the inherent uncertainty that characterizes river catchment dynamics 

and the problems of model overparameterization or time consuming. Moreover some 

uncertainties relevant to description parameters, understand only based on fuzzy and data 

diven models [2]. The advantages of alternative, efficiently parameterized data-based 

mechanistic models, identified and estimated using statistical methods, are discussed. An 

elementary brief part of ANN has been added here in the distance learning course for easy 

insight, though there are advanced architectures like recurrent neural network (RNN), radial 

basis function (RBF),self-organizing map (SOM) and othersused in flood forecasting. 

2-2-5-1- Artificial neural networks 

An artificial neural network is nothing but a collection of interconnected processing elements 

(PEs). The connection strengths, also called the network weights, can be adapted such that 

the network's output matches a desired response (Fig 2-25). 

 

Fig. 2-25 Typical architecture of single hidden layer neural network 
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Fig. 2-25 depicts a typical multilayer perceptron, for example, which resembles a black box 

model, where a set of a data like x1, x2, x3…xn are fed directly to the network through the 

input layer, and subsequently produces expected result y in the output layer. The output is 

determined by the architecture of the network. 

In multi-layered perceptron, hidden layer means a third layer of processing elements or units 

in between the input and output layers that increases computational power. In principle, the 

hidden layer can be more than one layer. In practice the number of neurons in this layer is 

evaluated by trial and error. Hornik et al. (1989) proved that a single hidden layer containing 

a sufficient number of neurons can be used to approximate any measurable functional 

relationship between the input data (debit, rainfall,..) and the output variable (water level, …) 

to any desired accuracy. In addition, De Villars and Barnard (1993) showed that an ANN 

comprising of two hidden layers tends to be less accurate than its single hidden layer 

counterpart. In this, a single hidden layer ANN has been used. 

Each input xi (i =1,…,n) is attenuated by a factor wij, more commonly called a weight of the 

network, which is associated with the connection linking input xi to hidden neuron j (j = 

1,….,k), where, k is the number of neurons in the single hidden layer. The weighted sum of 

the incoming signals entering a neuron is fed via an activation function, which is non-linear, 

producing a value that in turn, act as an input signal sent to the output layer. This is repeated 

for the output weights. The following expression gives the output value of the network. 

 

Where, the sigmoidal activation functionis given by: 

 

his function given at eq. 2 is a continuous function that varies gradually between asymptotic 

values 0 and 1 or -1 and +1. Where, is the slope parameter, which adjusts the abruptness 
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of the function as it changes between the two asymptotic values. Sigmoid functions are 

differentiable, which is an important feature of neural network theory. 

To obtain the best approximations, it is needed to determine the optimum set of weights 
wij and aj that will yield the least mean square value of the desired response. Thus the 
following performance criterion needs to be satisfied. 

 

Normalization of the data 

It is mentioned that the sigmoidal function can take the values ranging in the (0, 1) domain, 
a normalisation of the values of the input variables are done. 

Numerous goodness of fit statistical criteria are proposed in the literature for evaluating 
hydrological modelling results. Two of these are, namely RMSE, and Nash - Sutcliffe 
coefficient (1970).  

 

Where, Yo = Observed daily gauge of the catchment on day i; 

Yp = Predicted daily gauge of the catchment on day i; 

As could be seen from Fig 2-26, the model proved their capability in predicting the data, 
especially the stage data, which shows a high correlation of the observed and predicted data 
(Fig. 2-28). 

ANN techniques can develop and solution in MATLAB software. 
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Fig. 2-26 predicting the water level with ANN 

 

2-2-5-2- Fuzzy expert system design for flood forecasting 

The platform for the fuzzy logic expert system can be MATLAB and MATLAB'S Fuzzy Logic 

Toolbox. Daliri & et,al.,( 2013) developed a semi-fuzzy method (DSM) to priority flooding 

intensity based on interest parameters. In FF techniques, we must some years of average 

hourly stage data and expert knowledge are used to create a rule base for the fuzzy logic 

model. Rules are defined for both the high and low extreme conditions, with regard to actual 

occurrences, because of the physical nature of the relationships. Depending on number of 

membership functions for each input variable; the minimum rule base is created. For each 

data point, all rules are evaluated. The fuzzy logic and ANN models are evaluated based on 

their ability to predict the discharge (Fig 2-28). 

   2-2-5-3- ANFIS (Adaptive Neuro-Fuzzy Inference System) models 

The hybrid system of learning has been attempted at combining ANN and fuzzy logic for 

developing the stage-discharge relationship to achieve a faster rate of convergence by 

controlling the learning rate parameter with fuzzy rules. 
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 The objective is to get a minimizer, which has a low computing cost and a large convergence 

domain. This learning ability is achieved by presenting a training set of different examples to 

the network and using learning algorithm, which changes the weights in such a way that the 

network reproduces a correct output with the correct input values. The main dissimilarity 

between fuzzy logic system (FLS) and neural network is that FLS uses heuristic knowledge 

to form rules and tunes these rules using sample data, whereas NN forms "rules" based 

entirely on data. Learning rate control by fuzzy logic has been depicted at Fig 2-27. ( FLC - 

fuzzy logic controller, MLP - multilayer perceptron). 

 

Fig. 2-27 Learning rate control by fuzzy logic 

Validation and comparison of results 

The ANN, fuzzy and neuro-fuzzy models thus developed is validated and compared with the 

observed data points and the statistical measures of goodness-of-fit of the neuromorphic 

models. Numerous goodness of fit statistical criteria are in literatures for evaluating 

hydrological modelling results. Fig. 2-28 shows the validation and comparison of models with 

observed data. 

As could be seen in preceding paragraphs, advance warning about the incoming flood peak 

and its probable time of occurrence can be achieved by several models. However, selection 

of a particular method or model, and its accuracy for a given site is largely governed by three 

factors - data availability; forecaster's knowledge of, and his experience with the basin; and 

forecaster's familiarity with software to be used in the forecast process. 



       

         Flood Forecasting Uncertainties 

 

 

 

8
9

 

The illustrated texts mentioned in this module are just the trail of a beginning and more of the 

subject and in-depth precision knowledge base, the readers are suggested to refer to 

advanced literature layouts. 

 

 

 

 

 

 

 

 

 

 

Fig. 2-28 Validation and comparison of results with observed data 

 

2-3. Forecast updating and verification 

Before verification and validation of the model, calibration process is need. Ideally the 
objective of calibration is to remove all possible bias and eliminate all possible noise included 
in the model. In reality, because of the constraint of input data quantity and quality, and 
simplistic assumptions that may be inherent in the model, care should be taken to achieve 
the proper balance between the calibration objectives and goodness-of-fit statistics. 
Sometimes, the latter may have to be sacrificed somewhat in order to achieve spatial 
consistency of the parameters. Generally, maybe there are three main objectives when 
calibrating conceptual hydrological models to an entire river basin for river forecasting 
applications. One objective that is relevant to FF techniques is when, the parameters of the 
models should function as they are intended: conceptual models were designed to have a 
physical basis and the parameters control portions of the models that represent specific  
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components of the overall process. The effects of each parameter are designed to be 
reflected in specific sections of the simulated hydrograph, for example rate of rise, peaks and 
flood volume. To be consistent with the physical basis of a model, and to produce results that 
will not only best reproduce the full range of historical observations, but also be most likely to 
extrapolate correctly beyond what was observed in the available historical record, each 
parameter should be used as it was intended. This means that parameters should not be 
adjusted or weighted intuitively to modify the final output statistics.  
In general, this means that, conditional to the choice of a specific model, its parameters will 
be adjusted to make the predicted values of the model resemble the observed ones. It is also 
important to recognize that model parameters may not fully incorporate a physical meaning, 
but are mostly uncertain quantities that reflect all the sources of error. In which case, 
parameter estimation, and consequently model calibration, loose their original meaning, and 
the full probability density of the parameters must be derived. Moreover, if we consider that 
the parameters of a physical-process model have a clear physical meaning and are 
marginally affected by the scale of the representation, the parameter values should not be 
estimated but set to reflect the a priori knowledge. The reason for this lies in the fact that 
parameter estimation (particularly when using least squares techniques) tends to discard the 
extremes in the predicted values, since the method generally aims at preserving the central 
moments of the observed quantities. There are two basic methods for the calibration of 
hydrological models: 
a)The trial and error method 
b)Automated parameter optimization 
After calibration, the validation period used for verification should be long enough to 
incorporate several observed flood events, so it may need to be of two or more years extent. 
A number of statistical methods such as Root mean square error (RMSE), Average absolute 
error (AAE), Coefficient R2 and NASH-Sutcliffe coefficient and several graphical verification 
criteria are available to determine the success or otherwise of verification, and these can be 
applied to all model estimation points[3]. Comparing hydrographs provides a qualitative 
evaluation of the simulation skill, as the graphical representation permits a quick comparison 
between simulated and observed levels within a time frame. Seban and Askew (1991) 
categorized these errors as (i) volumetric or amplitude errors, (ii) timing 
or phase errors and (iii) shape errors or i and ii  (Fig 2-29). 
 
 
 
 
 
 
 
 
 

Fig. 2-29 Types of error between measured and simulated flood hydrographs 
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This allows useful comparisons to be made with alarm levels and forecast lead time. The 
accurate representation of flood volume is also important, in that it demonstrates how 
effective the model is at relating the rainfall and runoff responses, and with regards to flood 
modelling, especially for out-of-bank flows (amplitude errors). The shape characteristics of 
the modelled (i and ii errors) and observed floods can be tested by the following parameters 
that based on Root mean square error statistical method: 
 
 
 
 
 

 

 

 

a)Peak percentage difference between observed and simulated floods: 
 
 

 

 

 

 

b) Phase difference of the peak flow (hours): 
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c) The volumetric difference: 

 

 

 

 

For selected flood events it is also recommended to test performance by defining a water 

stage threshold level to compare the time and volume of both the observed and computed 

hydrographs above the threshold. This could be done for a proposed or existing alarm or 

danger level, or a flow exceedance category, for example the level exceeded by 10 per cent 

of the flow values. 

As a mentioned above, In flood forecasting, a model with constant parameters may not be 
able to completely represent the complex processes in a basin. As a result, the simulated 
hydrograph can differ from the observed hydrograph, mainly due to uncertainties in input 
data, differences between basin physics and model structure, model calibration, and changes 
in catchment characteristic over time. 
The volumetric errors are mainly attributed to inadequate model structure and basin 
representation, input/output data error or a combination of these errors. Timing errors may 
be introduced by the routing component of the model or by spatial and temporal discretization, 
whereas the shape errors are induced mainly in the conversion of rainfall to runoff by the  
model. These three types of errors can occur in different combinations in hydrologic models. 
Therefore, an adaptive forecast scheme may be used to update the model parameters, state 
variables and change in basin behaviour that cannot be simulated by the initial model (Young 
2002, Mediero et al. 2012)[1]. 
As a result, forecast updating and data assimilation have become major components of FF. 
A variety of techniques for forecast updating are available with the goals of error prediction, 
data assimilation, and parameter updating (Sene,  2008). Forecast updating maybe periodic 
or real time. Updating procedures provide feedback to the hydrological simulation models by 
estimating errors between model output and observed state variables (Fig.2-30). 
Simple updating procedures consider addition of the current error to the next new forecast 
for improving model outputs, compared to the observed hydrograph. More complex 
procedures involve analyzing the error series δY1, δY2,…,δYi to identify possible trends or 
periodicities that can be extrapolated to next time step to estimate the potential new error 
δYi+1, which are then used to update the new forecast(WMO 2012). 
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Fig.2-30 Schematic diagram of forecasting with updating (adapted from Serban and Askew 1991). 
 

 

The observed values, Yo1, Yo2,…, Yoi, can be used to redefine the state variables of the 
forecast model. This is termed recursive estimation, and if the forecast model can be cast in 
a sufficiently simple form, it provides a formal strategy for adjusting model output. One 
example is the Kalman Filter, which is frequently used for updating an FF by employing the 
general algorithm: 
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Model performance generally declines with increasing lead time, and thus it is generally 
useful to evaluate how model performance varies with lead time in order to establish the 
reliable lead time of a model (Sene 2008)[1]. 
 
2-3-1-Forecast verification criteria 

Forecast verification is somewhat different from the model verification described above. A 

number of criteria exist to verify forecasts and the evaluation is used to improve models and 

to develop confidence in decisions made according to forecasts. selection of criteria, together 

with their rationale, is summarized in a document made available to the public at the 

Australian Bureau of Meteorology Website: 

 http://www.bom.gov.au/bmrc/wefor/staff/eee/verif/ verif_web_page.html. 

Examples include the skill scores known as probability of detection (PoD), false alarm rate 

(FAR), the relative operating characteristic (ROC) and the Brier skill score. There has also 

been progress in evaluating the economic value of the forecasts, for example with the 

Relative Value (RV) score. It is recommended that the use of these techniques should 

become more widespread amongst flood warning practitioners, to gain a full perspective of 

the usefulness of hydraulic and hydrological models and to improve operational decisions. 

“Continuous measures” such as bias (mean error), the root mean square error (RMSE) and 

the mean absolute error (MAE) all measure differences between forecast and actual 

quantities in numerical terms. There is no absolute measure of what constitutes a “good” or 

“poor” score. However, after a period of use it can be decided what ranges are acceptable 

for the application in question. The methods will provide a means whereby successive sets 

of results will indicate whether the accuracy of measures are improving or not. 

In the case that forecasts relate to a threshold, either a quantity or a time, for example a flood 

peak forecast, then appropriate measures will be used based on the contingency table or 

“categorical measures” approach. These may include the hit rate (HR) or PoD, FAR (which 

is 1 / probability of occurrence [PoO]), and the threat score (TS) or conditional success index 

(CSI). These measures allow a target index to be established, whereby an ideal level of 

successful achievement, for example 75 per cent, could be defined in terms of numbers of 

hits, misses and false alarms[3].  

The warning component of an FF system can also be evaluated using a threshold-based 

evaluation, where contingency tables are used to identify false alarms or probability of 

detection.  

http://www.bom.gov.au/bmrc/wefor/staff/eee/verif/
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However, for all verification methods, the low frequency of high flood events, the lack of data 

for the high flood events, and the issues associated with verifying flood models with mean 

discharges significantly limits verification of flood forecasting(Cloke and Pappenberger 2009). 

 
2-4- Data resources 

2-4-1- RS and GIS  

The physical characteristics of the basin (such as surface area, topography, geology, and 

land-surface cover) determine the nature of potential flooding. The hydrological response of 

a basin is impacted by changes in land use associated with urbanization, forestry, agriculture, 

drainage, or channel modification (Ma et al. 2009)[1]. A record of such changes over time is 

essential to updating FF models. Remote sensing (RS) such as satellite and radar (INSAR, 

Daliri,2018), generates information, sometimes in real time, on the spatial and temporal 

characteristics of a storm and a basin. The full potential of RS for applications related to flood 

forecasting can be harnessed by the integration of data from a variety of sensors operating 

at different wavelengths (Gangwar, 2013)[1]. Geographic Information System (GIS) provides 

a range of visualization products useful for FFWS, e.g. visualization of areas likely to be 

submerged and the movement of a flood wave (Fig.2-31). 

 

 

 

 

 

 

 

Fig.2-31 Simulated inundation mapfrom HD model[1] 
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Some data such as DEM, land use, snow/Ice melt data, soil moisture and water storage, 

precipitation measurement, flood inundation mapping and other data that mentiond above 

can obtain and estimate by RS techniques. 

 

2-5- Challenges and future directions 

Pagano et al. (2014)[1], describe four key challenges in operational forecast, namely:  

(i) best use of available data,  

(ii) modelling for accurate prediction, (especially in ungauged basins and global hydrological 

forecasts based on the global model and mesoscale models and nowcasting, chapter 1) 

(iii) translating forecasts to effective warnings-disseminating timely information to affected 

community and concerned authority for taking right decision, and 

(iv) administering the operational forecast – conservative approach of forecasting institutions 

due to perceived liability, capacity building of personals and retention of talented employee. 

Significant advances are being made in remote-sensing techniques, and hydrologic 

modelling tools for FF need to be continuously updated to make full use of these techniques. 

Measurement of river flow by satellite-based sensors has the potential of overcoming 

problems, where such data are not available. Insufficient implementation and maintenance 

of ground-based, real-time hydrologic observation still remains a challenge, because it is 

necessary to determine the lag time between data observation and availability to help flood 

forecasters and reduce uncertainties and erros, so Ensembles of Numerical Weather 

Predictions (NWPs) and ensemble flood forecasting are being increasingly used in flood 

forecasting systems (Chapter 2). 
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Chapter 3        Uncertainties in Flood Forecasting systems  

  

“You cannot be certain about 

uncertainty” 

— Frank Knight,1972 

 
3-1 Introduction 

Model forecasts are inevitably affected by different sources of errors and uncertainties. In 

theory, the degree and influence of all these errors should be accounted for to obtain an 

unbiased minimum variance forecast. From statistical theory it is known how best to account 

for, and possibly eliminate, errors in forecasts. Following the statistical approach, each error 

source should be described through its probability density function and marginalized from the 

predictive probability. Unfortunately, most of the relevant probability densities are not only 

unknown but also extremely difficult to infer. Even the choice of model has a degree of error 

involved[3]. 

Flood event probability is of great interest, both in estimating flood risk and in decision making 

about design of structures for flood protection. Basic uncertainties to  flood event estimation  

classification is on natural and epistemic uncertainties. Concretely, hydrological, hydraulic, 

statistical and geotechnical uncertainties play role in real value of flood event probability, each 

of these having two basic concepts of uncertainties involved in it. Climate change and global 

warming could play significant role in future floods, bringing more uncertainty in statistical 

description and hydrological processes of water protection systems. 

In decision making about hydraulic structures, that is, flood protection structures, for given 

solutions of the problem, usually the range of different scenarios and their risk is analyzed. It 

is quite difficult to say what is really going to happen, and decision makers can only make 

decisions under uncertainty, knowing only the probabilities and the range of reliability for each 

possible state of flood protection system.  

Some uncertainties can be quantified, some cannot. Rational use of the term uncertainty 

includes the quantification of those[6]. When it is about flood protection structures, the 

absence of absolutely safe system is the valuable thing to have in mind. So, there always 

exists dealing with the event causing possible damages, and rational deliberation about it 

includes defining its probability p within the given range of uncertainty, that is, p±Δp. [6]. 
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The uncertainties included in water resources management can be distinguished in data 

uncertainties, model uncertainties and technological uncertainties. Data uncertainty is usually 

said to be the main uncertainty driver and the greatest part of the uncertainty influencing the 

flood probability estimation.[5] Considering the relatively young hydrological history of, 

depending of the area, 50-100 years in estimating the events with several times greater return 

periods, it seems quite convenient to corroborate previous sentence. [5]. Not that just 

hydrological history is relatively young and not filled with longer period of measurements, but 

various imperfections in measurings, errors done by humans, irregularly calibrated or poorly 

maintained equipment, inadequate sampling etc. also contributes to the amount of 

uncertainties.  

Though models are just simplified representation of complex systems and always have some 

aspect of uncertainty involved whether through describing the system or through calibration, 

validation or wrong interpretation of system’s nature. [6] 

Merz and Thieken (2005)[5] separate natural (inherent, intrinsic) and epistemic uncertainty in 

the flood frequency analysis. Epistemic uncertainty arises from lack of understanding, 

measuring and describing the system, its phenomenons and bonds between inputs and 

outputs.[5] The main flood initiator, without which floods in fact can not occur, are rainfalls 

and snow melting. As these phenomenons have numerous cause-consequence connections 

with the whole sequence of different processes in atmosphere, the use of stochastics 

becomes unavoidable the probabilistic analysis of floods. It is hard, not to say impossible, to 

engage all of the factors influencing the formation of a flood event. Previously mentioned 

cause-consequence connections also include the part belonging to the natural uncertainty. 

Additionally, possible unexpected damages on levees, dams, lack of design and monitoring, 

increase the epistemic uncertainty making the modeling of probability and reliability of flood 

structures more challenging. The epistemic uncertainty can be reduced.[5] Natural 

uncertainty arises from variability of natural phenomenons. Basically, they are induced by 

climatic, atmospheric, hydrological variations, but also by unconsistencies in levee and 

foundation ground properties. Principally, the natural uncertainty can not be reduced.[5] In 

the way of controlling the material properties and choosing the certain places for material 

excavation, the aspect of unconsitence of building material can be partially bypassed. 

Ranzi et al. (2012) include climate change as category of uncertainty beside hydrological, 

hydraulic, geotechnical and climate change [6]. In the paper the classification of uncertainties 

which is used is division into statistical, geotechnical, hydraulic and hydrological uncertainty, 



       

         Flood Forecasting Uncertainties 

 

 

 

1
0

0
 

 as they seem to be obvious categories influencing the estimation of high water event 

probability, but up with having in mind climate variations could influence every of those. The 

objective of the chapter 2 is to notice, describe and classify those uncertainties and their 

components, and give recommendations about their treatment. The importance of given 

matter reflects in the risk assessment, highly determined by probability of set of scenarios, 

and designing the flood protection structures, where uncertainties, that is hydrological events 

with its reliability, should be indicated. 

The increased availability and application of probabilistic weather forecasts in flood 

forecasting means that the uncertainty arising from the precipitation forecast can be 

assessed. This has led to a wider interest in how uncertainty is affecting flood forecast 

systems. In literature there are general techniques and principles available on how to deal 

with uncertainty. However, there are no of well-accepted guidelines on the implementation 

these principles and techniques. There is neither coherent terminology nor a systematic 

approach which means that it is difficult and perhaps even impossible to assess the 

characteristics and limitations of uncertainty quantification methods. Selecting the most 

appropriate method to match a specific flood forecasting system is therefore a challenge. The 

main findings of this review are that there are remaining mathematical and theoretical 

challenges in uncertainty quantification methods and that this leads to the use of assumptions 

which in turn could lead to a misrepresentation of the predictive uncertainty. 

Historically, many flood forecasting systems produced deterministic forecasts. Ensembles of 

Numerical Weather Predictions (NWPs) are being increasingly used in flood forecasting 

systems. This allows the uncertainty of the meteorological forecast input data to be assessed, 

examples of this development include The Hydrological Ensemble Prediction Experiment 

(HEPEX, 2017) initiative (Cloke and Pappenberger, 2009)[4,1]. Recently, there has been 

more emphasis on the presence of uncertainty in all components of the forecasting system 

(Krzysztofowicz, 2002; Pappenberger et al., 2005)[4,1]. Research with end-users has found 

that there is an appetite for uncertainty information if improvements in accuracy and lead time 

can be achieved (Lumbroso et al., 2009)[4]. Powerful techniques are becoming more widely 

available within flood forecasting systems and these allow the quantification of uncertainty, 

sensitivity analysis, risk analysis and decision analysis[4,1]. However, there are no of 

guidelines on how to implement these principles and techniques in complex flood forecasting 

systems where there are multiple sources of uncertainty to consider (Zappa et al., 2010; Liu 

and Gupta, 2007)[4]. There is a lack of coherent terminology and systematic approaches 
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 which leads to difficulty in assessing characteristics and limitations of individual methods. 

This makes selecting the most appropriate method for practical problems difficult and 

perhaps impossible (Montanari, 2007)[4]. Within flood forecasting systems Liu and Gupta 

(2007) highlight four areas that need to be addressed[4]: 

I. Understanding of uncertainty (this chater) 
II. Quantifying uncertainty (this chapter and other chapters) 
III. Reducing uncertainty (calibration, updating:,…chapter 2 and other chapters) 
IV. Communication of uncertainty. (warning dissemination: charter2 and this chapter) 

 

This chapter focusses on areas one and two: the understanding and quantification of 

uncertainty. More explicitly, the aim of this chapter is to provide a review of the understanding 

of uncertainty in flood forecasting systems and the available methods of dealing with it. 

Further, this chapter identifies gaps and limitations with regards to the understanding and 

quantification of uncertainty. 

 

3-2 Concept of uncertainty 

There are some things that you know to be true, and others that you know to be false; yet, 

despite this extensive knowledge that you have, there remain many things whose truth or 

falsity is not known to you. We say that you are uncertain about them. You are uncertain, to 

varying degrees, about everything in the future; much of the past is hidden from you; and 

there is a lot of the present about which you do not have full information. Uncertainty is 

everywhere and you cannot escape from it (Dennis Lindley, (2006)). So, Uncertainty, the lack 

of certainty, a state of limited knowledge where it is impossible to exactly describe the existing 

state, a future outcome, or more than one possible outcome. Uncertainty refers 

to epistemic situations involving imperfect or unknown information. It applies to predictions of 

future events, to physical measurements that are already made, or to the unknown. 

Uncertainty arises in partially observable and/or stochastic environments, as well as due 

to ignorance, indolence, or both.  

Uncertainty must be taken in a sense radically distinct from the familiar notion of risk, from 

which it has never been properly separated.... The essential fact is that 'risk' means in some 

cases a quantity susceptible of measurement, while at other times it is something distinctly 

not of this character; and there are far-reaching and crucial differences in the bearings of the  

https://en.wikipedia.org/wiki/Dennis_Lindley
https://en.wikipedia.org/wiki/Certainty
https://en.wikipedia.org/wiki/Epistemic
https://en.wikipedia.org/wiki/Information
https://en.wikipedia.org/wiki/Partially_observable
https://en.wikipedia.org/wiki/Stochastic
https://en.wikipedia.org/wiki/Ignorance
https://en.wikipedia.org/wiki/Laziness
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phenomena depending on which of the two is really present and operating.... It will appear 

that a measurable uncertainty, or 'risk' proper, as we shall use the term, is so far different 

from an unmeasurable one that it is not in effect an uncertainty at all. Frank, K. (1885–1972). 

Measurement of uncertainty (measured value ± uncertainty ) 

A set of possible states or outcomes where probabilities are assigned to each possible state 

or outcome – this also includes the application of a probability density function (PDF) to 

continuous variables.  

Second order uncertainty 

In statistics and economics, second-order uncertainty is represented in probability density 

functions over (first-order) probabilities.  

Risk 

A state of uncertainty where some possible outcomes have an undesired effect or significant 

loss. 

Measurement of risk 

A set of measured uncertainties where some possible outcomes are losses, and the 

magnitudes of those losses – this also includes loss functions over continuous variables.  

Other taxonomies of uncertainties and decisions include a broader sense of uncertainty and 

how it should be approached from an ethics perspective:[8] 

 

Fig. 3-1 A taxonomy of uncertainty[8] 

 

 

https://en.wikipedia.org/wiki/Frank_Knight
https://en.wikipedia.org/wiki/Probabilities
https://en.wikipedia.org/wiki/Probability_density_function
https://en.wikipedia.org/wiki/Risk
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For example, if it is unknown whether or not it will rain tomorrow, then there is a state of 

uncertainty. If probabilities are applied to the possible outcomes using weather forecasts or 

even just a calibrated probability assessment, the uncertainty has been quantified. Suppose 

it is quantified as a 90% chance of sunshine. If there is a major, costly, outdoor event planned 

for tomorrow then there is a risk since there is a 10% chance of rain, and rain would be 

undesirable. Furthermore, if this is a business event and $100,000 would be lost if it rains, 

then the risk has been quantified (a 10% chance of losing $100,000). These situations can 

be made even more realistic by quantifying light rain vs. heavy rain, the cost of delays vs. 

outright cancellation, etc. 

Some may represent the risk in this example as the "expected opportunity loss" (EOL) or the 

chance of the loss multiplied by the amount of the loss (10% × $100,000 = $10,000). That is 

useful if the organizer of the event is "risk neutral", which most people are not. Most would 

be willing to pay a premium to avoid the loss. An insurance company, for example, would 

compute an EOL as a minimum for any insurance coverage, then add onto that other 

operating costs and profit. Since many people are willing to buy insurance for many reasons, 

then clearly the EOL alone is not the perceived value of avoiding the risk[1]. 

Some also create new terms without substantially changing the definitions of uncertainty or 

risk such as , surprisal, Vagueness and Ambiguity. Daliri (2014) develop concept of 

Vagueness in groundwater safe yield [1].  

surprisal is a variation on uncertainty sometimes used in information theory or one huge 

extreme event in water resources components. 

Vagueness is a form of uncertainty where the analyst is unable to clearly differentiate 

between two different classes, such as 'person of average height.' and 'tall person'. This form 

of vagueness can be modelled by some variation on Zadeh's fuzzy logic or subjective logic. 

Ambiguity is a form of uncertainty where even the possible outcomes have unclear meanings 
and interpretations. The statement "He returns from the bank" is ambiguous because its 
interpretation depends on whether the word 'bank' is meant as "the side of a river" or "a 
financial institution". Ambiguity typically arises in situations where multiple analysts or 
observers have different interpretations of the same statements. 

Uncertainty may be a consequence of a lack of knowledge of obtainable facts. That is, there 
may be uncertainty about whether a new rocket design will work, but this uncertainty can be  

 

https://en.wikipedia.org/wiki/Calibrated_probability_assessment
https://en.wikipedia.org/wiki/Surprisal
https://en.wikipedia.org/wiki/Vagueness
https://en.wikipedia.org/wiki/Ambiguity
https://en.wikipedia.org/wiki/Vagueness
https://en.wikipedia.org/wiki/Surprisal
https://en.wikipedia.org/wiki/Information_theory
https://en.wikipedia.org/wiki/Vagueness
https://en.wikipedia.org/wiki/Lotfi_A._Zadeh
https://en.wikipedia.org/wiki/Fuzzy_logic
https://en.wikipedia.org/wiki/Subjective_logic
https://en.wikipedia.org/wiki/Ambiguity
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removed with further analysis and experimentation. 

At the subatomic level, uncertainty may be a fundamental and unavoidable property of the 
universe. In quantum mechanics, the Heisenberg uncertainty principle puts limits on how 
much an observer can ever know about the position and velocity of a particle. This may not 
just be ignorance of potentially obtainable facts but that there is no fact to be found. There is 
some controversy in physics as to whether such uncertainty is an irreducible property of 
nature or if there are "hidden variables" that would describe the state of a particle even more 

exactly than Heisenberg's uncertainty principle allows. Although A.Einstein, believe there is 

no uncertainty in real world.  

Uncertainty of a measurement can be determined by repeating a measurement to arrive at 

an estimate of the standard deviation of the values. Then, any single value has an uncertainty 

equal to the standard deviation. However, if the values are averaged, then the mean 

measurement value has a much smaller uncertainty, equal to the standard error of the mean, 

which is the standard deviation divided by the square root of the number of measurements. 

This procedure neglects systematic errors, however. 

When the uncertainty represents the standard error of the measurement, then about 68.3% 

of the time, the true value of the measured quantity falls within the stated uncertainty range. 

These values follow from the properties of the normal distribution, and they apply only if the 

measurement process produces normally distributed errors. In that case, the quoted standard 

errors are easily converted to 68.3% ("one sigma"), 95.4% ("two sigma"), or 99.7% ("three 

sigma") confidence intervals. 

Measurement is a process of experimentally obtaining the value of a quantity. The quantity 

that we intend to measure is called measurand. In principle, the aim of a measurement is to 

obtain the true value of the measurand. Every effort is made to optimize the measurement 

procedure in such a way that the measured value is as close as possible to the true 

value. However, our measurement result will be just an estimate of the true value and the 

actual true value will (almost) always remain unknown to us. Therefore, we cannot know 

exactly how near our measured value is to the true value – our estimate always has some 

uncertainty associated with it. The difference between the measured value and the true value 

is called error. Error can have either positive or negative sign. Error can be regarded as being 

composed of two parts – random error and systematic error – [1]. Like the true value, also 

the error is not known to us. Therefore it cannot be used in practice for characterizing the 

 

https://en.wikipedia.org/wiki/Quantum_mechanics
https://en.wikipedia.org/wiki/Heisenberg_uncertainty_principle
https://en.wikipedia.org/wiki/Standard_error_(statistics)
https://en.wikipedia.org/wiki/Systematic_error
https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Standard_error_(statistics)
https://en.wikipedia.org/wiki/Standard_error_(statistics)
https://en.wikipedia.org/wiki/Sigma
https://en.wikipedia.org/wiki/Confidence_interval
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quality of our measurement result – its agreement with the true value Fig.3-2). 

.  

 

Fig 3-2  Interrelations between the concepts true value, measured value, error and uncertainty 

 

The quality of the measurement result, its accuracy, is characterized by measurement 

uncertainty (or simply uncertainty), which defines an interval around the measured 

value CMEASURED, where the true value CTRUE lies with some probability. The measurement 

uncertainty U itself is the half-width (if is normal distributed, if not the, range is non-symmetric) 

of that interval and is always non-negative. 

Measurement uncertainty is always associated with some probability – and it is usually not 

possible to define the uncertainty interval in such a way that the true value lies within it with 

100% probability. Measurement uncertainty, as expressed here, is in some context also 

called the absolute measurement uncertainty. This means that the measurement 

uncertainty is expressed in the same units as the measurand. Also, it is sometimes more 

useful to express measurement uncertainty as relative measurement uncertainty, which is 
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 the ratio of the absolute uncertainty Uabs and the measured value y: 

 

Relative uncertainty is a unitless quantity, which sometimes is also expressed as per cent. 

Measurement uncertainty is different from error in that it does not express a difference 

between two values and it does not have a sign. Therefore it cannot be used for correcting 

the measurement result and cannot be regarded as an estimate of the error because the 

error has a sign. Instead measurement uncertainty can be regarded as our estimate, what is 

the highest probable absolute difference between the measured value and the true value. 

With high probability the difference between the measured value and the true value is in fact 

lower than the measurement uncertainty. However, there is a low probability that this 

difference can be higher than the measurement uncertainty. 

Both the true value and error (random and systematic) are abstract concepts. Their exact 

values cannot be determined. However, these concepts are nevertheless useful, because 

their estimates can be determined and are highly useful. In fact, as said above, our measured 

value is an estimate of the true value. 

A FFWS may have two types of prediction failures: 

a) the system may fail to issue a warning for a flood event (error of omission), and 

b) it may issue a warning for an event that does not materialize (error of commission). 

In the first case, there may be loss of life, infrastructure, and property due to a flood. In the 

second case, people may lose trust in the forecast and may not respond to the next warning. 

Thus, analysis and communication of FF errors and uncertainties are critical to minimize the 

possibilities of either type of failure[2]. 

Moreover While distributed models are generally expected to reproduce the hydrological 

processes in spatially-varied catchments more accurately, uncertainty in model parameters 

can lead to substantial errors in distributed models (Carpenter and Georgakakos 2006). 

Uncertainty indicates that something is not able to be relied on, is not known or not definite 

(Oxford English Dictionary, 2017). Two well-known types of uncertainty are: 
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aleatory and epistemic. Aleatory uncertainty is uncertainty resulting from natural variability 

and randomness and epistemic uncertainty is uncertainty due to lack of knowledge (Li, Chen 

and Feng, 2013) and [1].  

In flood forecasting systems uncertainty can be referred to in terms of ‘predictive uncertainty’ 

or ‘predicting the uncertainty’, (Todini, 2008; Weerts, Winsemius and Verkade, 2011; Palmer, 

2000; Van Steenbergen and Willems, 2015; Zappa et al., 2011), which is defined by Todini, 

(2008) as “the probability of any future (real) value, conditional upon all the knowledge and 

information, available up to the present.”[4]. 

3-2-1 Statistical uncertainty  

Statistical uncertainties can be classified in parameter and distribution uncertainty: 

the first one arising from: 

     -unsuficient amount of data,  

     -type of data (peak flow with different volume or/and duration), 

     - data shortage,  

     -inappropriate method of parameter estimation, 

     -human and equipment errors, and… ect,. 

and the second one arising from: 

     - the choice of distribution type for fitting the data for example 

     - suprisal events (corresponding with min or max in extreme conditions) 

      -method of calculation and …ect,. 

Also, global warming and climate change and variable can affect here. So natural and 

epistemic unsertainties can be classified in statistical uncertainties analysis.  

As the usual type of statistical analysis in design flood is univariate statistics (peak flow only) 

because of its simplicity and practicability, but it may be analysis with two or more variables 

(peak flow pay attention to volume and duration of flood) under circumestance that mentioned 
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 in continue.  

Statistical methods in hydrology, as usual, can be applied if the following conditions are  

satisfied: sequence is made from random variables, variables are mutually independent, 

sequence is homogenous, stationary and long enough. In flood frequency analysis there are 

two different approaches that are used for estimating the probability of flood event, that is, 

return period – annual maximum approach (AMA) and threshold exceedance approach 

(TEA). In AMA hydrological data is taken in the measuring period of at least 30 years and for 

every year peak flows are taken into statistical analysis. Therefore, the return period T(Q), in 

years, of the certain value of flow Q is calculated as follows[1]: 

 

 

where P(q ≥ Q) is the probability of exceedance of the flow Q.  

In TEA, flows with values above the certain threshold are taken in the analysis. It is usually 

applied in the circumstances in the cases when available data is taken form the measuring 

period less than 30 years (data shortage). The return period is calculated as follows: 

 

 

 

where P(q ≥ Q) * is the probability of exceedance of the flow Q calculated using the total 

number of sequence members, N is the number of unit time intervals and M is the number of 

sequence members. 

Using the AMA approach, theoretically could lead to choosing the flows close enough that 

some kind of natural dependence between those could be involved, but this is the possibility 

that rarely happens. Having in mind the year is quite rigid time border, the possibility of 

appearance of two timely closed high water waves connected with the same atmospheric 

event, one at the end of the year, one at the beginning of the next year, exists yet. In TEA, 

due to the usage of threshold, there is reasonable chance to have two or three mutually 

dependent events and while selecting the threshold, one high enough which excludes 

dependence should be chosen. Beside taken assumption of numerous causes influencing 
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 the flow in rivers, high water events are usually the consequence of the prevailing of rainfall 

event or snow melting in the certain period in the relation to other causes. So in both methods, 

as the high water events are mainly driven by one cause, there is a question of homogeneity 

involved in analysis. Although events could have similar and greatest peaks in analysis, the 

nature of high water event including its volume and duration is of interest. Still, flood structures 

dimensions and the intensity of the flood, is driven by those two parameters and the greatest 

peak does not necessarily has the greatest volume (in “very” small duration). Thus, in the 

manner of avoiding the previously said, statistical analysis can be made in events observing 

way, calculating the probability and return period for every certain high water event important 

with its significance. Also, using AMA in this situation does not put the interesting event on 

the end of every year, which tends to have large magnitude, especially looking the volume of 

water (the area under the flow) in December (1982). Although the mentioned event is not the 

greatest of all events, it does not mean that sometimes in next years this event can not 

exceed all the other events in the sense of volume, no matter as high water event is not 

observed in measurements (Fig 3-3). 

 

 

 

 

 

Fig 3-3  Hydrograph of Brodarci station for years 1982-1984[5] 

 

It is implicitly understood that all events (elements) in space V must be mutually exclusive, 

equally distributed in space and deplete the space as much as possible. The way the second 

and third property are fulfilled is made through using the hydrological measurements on 

disposition. Moreover, without timely longer observations these properties can hardly be 

improved. As Hrelja (2007)[5] stated that is supposed to have in mind the relatively young 

history of systematically taken hydrological measurements. In that manner, even if the one 

certain type of hydrological event is taken, the real space Ω of naturally existing elements 

representing the same type of event, including those of smaller and those of higher 

magnitudes, is hardly known, and thus depleted. Analyzing the high water events and 

predicting those with great return periods (of 100, 1 000, 10 000 years) requires 



       

         Flood Forecasting Uncertainties 

 

 

 

1
1

0
 

approximation of event distribution using some of the famous distributions (Gauss, Weibull, 

Pearson, Gamma, Galton and so on) and extrapolation beyond really taken 

measurements[1]. 

The epistemic uncertainty, arises from defining the appropriate statistical approach to treat 

high water events. Moreover, analysis should include all events considered as high water 

events. As volume and duration of the event, beside the flow, are also of the great importance, 

they have to be included in analysis. So the way these could be avoided is in observing the 

similar events in some specified time increments which will conduct to situation where the 

probability and return period for every different event could be estimated. Then, by using the 

Bayesian approach, probability that any of the events will happen could be estimated. On 

the other side, no matter all of this is fulfilled and the approach is perfect, from short period 

of measurements it is impossible to get the full information about any event.  

Natural uncertainty arises from the fact that statistical distribution of various hydrological 

events is susceptible to changes, due to reasons like climate variations, but also due to 

possible changes in river and basin environment. Thus, the sequence homogeneity and 

stationarity could be influenced through this type of uncertainty. Possible climate changes 

and global warming could affect this type of uncertainty. One of the definitions of climate 

changes says that they influence the statistical distribution of hydrological events. The open 

question is will it affect the nature of high water events and floods.  

Flood damages tends to be higher, but the main reason lies in fact that material resources in 

the vicinity of flood protection structures, tends to value more.[5] Due to the last IPCC 

synthesis report, increasing of the extreme rainfalls and river flows influence intensity and 

occurrence of floods in regional level, not in global level (IPCC).[5] So, with the temperature 

increasing the way it goes like today, it is quite possible to have changes in probability of high 

water events. 

 3-2-2 Geotechnical uncertainty (levee or earthen dam) 

Flood event connected with geotechnical uncertainty has dual nature. As the first, flood can 

occur due to undersizing of the structure (levee or earthen dam) and thus the mechanisms 

which could potentiate the failure are overtopping, erosion by waves, mechanisms 

interconnected with seepage like piping, hydraulic failure and liquefaction. It is obvious these 

mechanisms also depend of the nature of high water events. Overtopping intensity depend 

 



       

         Flood Forecasting Uncertainties 

 

 

 

1
1

1
 

 of the duration of some high enough water level, as also seepage cannot occur without long 

enough duration needed for water to get through levee. Referring to the 3-2-1, these also 

confirms the importance of the information about duration of the high water event, not just the 

peak flow. As the second, flood can occur due to the insufficiently robust structure which can 

be caused by various damages on the levee, including the occurrence of sliding surface, 

subsidence, damages caused by previous events etc. Geotechnical uncertainty cannot be 

strictly separated from hydraulic uncertainty because, that is, uncertainty arises from 

occurrence of hydraulic phenomenons, but also depends on material properties. Thus, failure 

mechanisms include[5]: 

 Sliding surface on the upstream slope or on the the downstream slope  

 Overtopping  

 Piping through levee or ground  

 Hydraulic failure of the outside slope or ground  

 Ground and levee material liquefaction  

 Erosion by waves  

 Ground and/or levee subsidence  

 Earthquake  

 Different type of damages on levee caused by animals and/or humans, tree damages etc...  

 

As it is obvious, except of material properties, occurrence of these mechanisms depends of 

the high water nature – intensity of water level increase, decrease and duration. These 

mechanisms are principally acting in the combination and levee failure due to breaching is 

complex for full physical and mathematical treatment[1]. Mathematical models usually, as the 

output result, give the time failure and output hydrograph. This also implies that any 

estimation of levee failure probabilities is, in the least, challenging.  

Occurrence of sliding surface could potentiate the levee failure and thus the occurrence of 

flood event, if not at the moment of some present, possibly in some of the future high water 

events. This stands because the most critical situation for slides to occur (also surface slough) 

is when water level decreases suddenly. Then slopes, saturated with water and additionally 

loaded with flow from saturated area, have the greatest magnitude of load and the lowest 

resistance. For calculation of the sliding occurrence probability P(s), both on upstream and 

downstream slope, the concept of reliability from construction engineering can be used as it 

is in: 
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C50 and D50 are the median values of the capacity and demand. Capacity is given as the 

density distribution function of material resistance and demand as the density distribution 

function of loads acting on levee slope. Label σ stands for the standard deviation of capacity 

and demand given in lognormal distribution. Full treatment of these mechanisms includes 

considering the nature of water level decrease, which also emphisize the importance of 

considering the volume and duration of high water events. So the approximate probability of 

failure and flooding involves using two above equations, in combination with: 

 

 

 

having in mind that, due to water level decrease, it is not necessary this triggers the flooding.  

Overtopping occurs if water level exceeds the level of levee crown. As the circumstances 

where, at the same time, there are no any geometrical imperfections of levee and the material 

is appropriately compacted, it is quite possible that overtopping will potentiate the levee 

failure. Principally, the levee crown elevation is estimated as the sum of the level of the high 

water event with certain probability (that is return period) and some value called freeboard. 

Ignoring the freeboard, the overtopping probability P(O) (sometimes also called risk) of the 

high water with certain return period T during the structure life time LT can estimate by the 

above equation. 

In the cases when during the high water, due to the seepage through levee or ground, water 

flow removes material particles creating thin channels, the process is called piping. Further 

increasing of particles removal will enlarge those channels initiating the breaching of the 

levee. As mathematical models of internal erosions are still developing, probability 

quantification of levee failure due to piping is done by subjective judgement, so called  
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subjective probabilities. The probability of breaching by (through) piping P(Btp) can be 

estimated using the University of New South Wales method or modified form like in: 

 

 

 

where wi are the weights, i characteristics affecting the performance, Pref probability of 

breaching by piping of a reference levee with fixed characteristics. Characteristics include 

anything which could contribute to piping, like animal burrowing, seepage, subsidence, 

compactness, existing culverts etc. depending also of the material used for building levees. 

The same way probabilities of different damages can be estimated, which is already included 

in the mentioned method.  

Levees are usually designed and built in the way the compactness is as high as liquefaction 

should not occur during the high water event. Ground made of loose material, like sands, 

could potentiate fluidization, and flow of water coupled with material due to the pressure of 

water on upstream side could cause the levee failure and very likely the flood event. Although 

the material fluidization can occur without earthquake, at least as cold flow (creep), still, 

liquefaction is usually analyzed coupled with trigger like earthquake. As the concrete 

formulation of levee failure probabilities are not found, soil liquefaction probability could be 

estimated due to. 

Earthquakes are usually given with return period and its magnitude, and levees are sized in 

the manner they have got the certain safety factor, that is safety index as it is in above. The 

earthquake probability of the certain return period can be calculated using equation P(O), 

combining with equation P(s) and β and calculating the probability of the high water level of 

certain period resulting in the probability of concomitant earthquake with levee failure and 

flooding.  

All of the accounted uncertainties are sometimes included in considering the probability of 

levee failure, without analyzing every each of those. The probability of failure is then 

estimated depending of the levee condition, which is roughly poor, medium or good and 

usually described using the levee fragility curves. The probability of failure is then given as 

the function of water level as it can be found in [12].  
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Epistemic uncertainty arises from the possibility to understand and describe all of these 

complex mechanisms, which usually come in combinations. Natural uncertainty arises from 

the range of differences in material properties used for building levees and from the nature 

of high water events. Realization of mentioned mechanisms does not necessarily mean the 

occurrence of flood event, but as they can always potentiate it, it is worth to notify them, 

estimate their magnitude and include them in the risk scenarios. Since the mechanisms could 

come individually or in combination, the effort could be made in estimating the tree event [12], 

resulting in the probability of all possible events. 

3-2-3 Hydraulic and hydrological uncertainty  

As hydraulic uncertainties cannot be separated by geotechnical, and hydrological 

uncertainties are also connected with statistical treatment of hydrological events, there also 

exist some aspects which can be precieved as purely hydraulic and hydrological. Water level 

and flow depend on the nature of incoming high water waves, thus consumption curve (water 

level dependency of flow at certain hydrological station) tend to have varying nature, creating 

a loop around mean value. As velocity and flow of incoming increasing water wave increase 

results in greater flow for the same level, outcoming decreasing wave causes less flows for 

the same level [1]. Thus, this part arises from the quality of hydrological measurements and, 

equipment and their usage, appropriate interpretation of the data, appropriate regression 

analysis, which are hydrological, moreover epistemic uncertainty. As natural part, 

hydrological processes are interconnected with climate and atmospheric processes. Climate 

variations and changes could make the impact on the occurrence and intensity of future 

floods, which is already mentioned in the chapter. Another epistemic uncertainty is thus 

modeling uncertainty and the question of equality of the water level return period and flow 

return period . That is, after the assumed levee’s route and profile, it is necessary to simulate 

situation using the hydrograph of high water event and consumption curve of some upstream 

profile. The resulting water levels depends of bed roughness and geometry, as two main 

drivers of return period enaquality. Thus it is necessary to make calibration and validation, 

usually with lower return period flows, respectively with measurements on disposition, so 

these difficulties are hardly avoidable. Epistemic uncertainty arises from the possibility to fully 

understand and describe the flow in river beds, reservoirs, seepage etc. This also relates with 

the description of the flow coupled with geotechnical failures. Natural uncertainty arises from 

the range of differencies in material properties, that is, natural material used for building 

levees and material of the ground. Variations in materials also mean variations in hydraulic  
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properties. Hydrological processes are interconnected with climate and atmospheric 

processes. Climate variations and changes could make the impact on the occurrence and 

intensity of future floods, which is already mentioned in the chapter. 

Another epistemic uncertainty in flood estimation, is effect of sediment on the peak debit. We 

can modify this effect by hydraulic coefficients based on field measurements [1]. 

Hydrological and hydraulic uncertainty should be treated in the way of defining the reliability 

of the equality of flow and water level return period or find causes of this anomaly. 

 

3-3 Sources of errors and uncertainties 

Uncertainties arise in FF due to a number of sources: input data uncertainty, model 

uncertainty, and model parameter uncertainty. Leahy et al. (2007)[2] have characterized the 

uncertainties in the flood warning process and identified the various sources of errors (Fig. 3-

4), and Sene (2008) has outlined the general approaches for evaluating uncertainties. 

 

 

 

 

 

 

 

 

 

 

Fig 3-4 Error framework for rainfall-runoff models for example in flood forecasting[2] 
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The critical meteorological input in FF is observed and/or forecasted precipitation 

(Krzysztofowicz 1999, Marty et al. 2013)[2]. Forecasted precipitation is typically derived from 

quantitative precipitation forecasts (QPF) by numerical weather prediction (NWP). The grid 

size of NWP can be a major source of error in rainfall forecast, which is further aggravated 

by the positional error of these grids. Even observed precipitation can have significant 

uncertainties. Rain gauges sample a very small area and there can be large gaps between 

them, which can translate into large precipitation errors, particularly in mountainous areas 

(Stanton et al. 2016)[2]. Weather radars can sample large areas but do not directly measure 

rainfall and there are issues with conversion from reflectivity to rainfall (Catchlove et al. 

2005)[2]. Flood producing storm events typically occur at highly localized scales (<10 km²) 

and may not be captured by gridded remotely sensed products, such as TRMM (Stanton et 

al. 2016)[2]. In addition to precipitation, a number of other errors and uncertainties can be 

substantial. For example, errors associated with the initial conditions (e.g. soil moisture) are 

particularly important when the models are applied to isolated storm events. In addition, any 

model updating or downscaling can create errors and uncertainties, as can infrastructure 

operations (Cloke and Pappenberger 2009)[2]. Errors can be introduced with the use of rating 

curves. Flood forecasts are generally given in the form of level (gauge data), while the 

hydrological models typically compute discharge. A rating curve is used to transform 

calculated flows to water levels. Generally, rating curves are developed with a limited number 

of discharge observations that may not cover extreme flood events, giving sufficient room for 

uncertainty. In addition, there can also be uncertainties in the gauge observations. 

Furthermore, operational uncertainty of a FFWS can be caused by erroneous or missing data, 

human processing errors, or unpredictable interventions (Krzysztofowicz 1999)[2]. 

Finally, important errors can arise from issues with the structure of RR models 

misrepresenting hydrologic processes, characterized by: model structure errors, parameter 

errors, and spatial discretization errors. Model structure results from the decomposition of 

complex physics of catchments into models of physical processes. These structure errors are 

not resolved with more data[2]. There may also be significant uncertainty relating to model 

parameters, which tends to decrease with time as more recorded runoff data become 

available and is used to tune the model parameters. Parameter uncertainties tend to vary 

with the size of study area, variabilities in its properties, the number of sub-divisions of the 

area, and resolution of data. A third primary error associated with RR models is the spatial 

representation of the catchment, of which there are three common approaches:  
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Rectangular grids (e.g. the SHE model), sub-catchments, and response units (e.g. the SWAT 

model). So sources of uncertainty in a flood forecasting system are linked to the elements 

that are included in the chain of models and will vary for different forecast setups. For 

example, the inclusion of a hydraulic model to estimate the levels and extent of flooding would 

add additional sources of uncertainty to a forecasting system which are only relevant if this 

element is part of the model chain. Krysztofowicz (1999)[4] identifies input uncertainty and all 

other uncertainties in the aggregate (e.g. hydrological uncertainty). Table 3-1 shows the 

varying sources of uncertainty that can affect a flood forecasting system. 

Table 3-1: Varying sources of uncertainty that can affect a flood forecasting system[4] 

 

 

 

 

 

 

 

 

 

Being explicit in naming sources of uncertainty is challenging owing to the wide variety of 

flood forecasting systems. The most prevalent sources of uncertainty affecting flood 

forecasting systems have been identified as: uncertainty resulting from NWP forecasts, 

uncertainty from issues with measurements and observations, uncertainty due to initial 

conditions, uncertainty due to the model being unable to fully represent processes and 

uncertainty due to parameters. Here, NWP forecasts are classified as input data and the 

uncertainties are treated as a single source of uncertainty. The authors are aware that NWP 

originates from atmospheric prediction models and uncertainty sources can be separated out 

in more detail; however, this is outside the scope of this chapter[4]. 
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In previus sections and above, described somewhat about the concept and resources of the 

uncertainties. In this secton to be continue more describe aboue the subjects and in other 

chapters will described more detail about the items. 

3-3-1 NWP forecasts and Input forecast errors 

Atmospheric variables that are used in flood forecasting systems include precipitation, 

temperature and evaporation. Precipitation is considered to be the variable that has most 

effect on a flood forecasting systems outputs (e.g. water level, flow) (Strauch et al., 2012)[4]. 

Excluding seasonal forecasts, there are three types of precipitation forecasts that are typically 

applied to flood forecasting systems:  

I. Short to mid-range precipitation forecasts for NWP.  

II. Short term rainfall forecasts and nowcasts (e.g. 0 to 9 hours) from extrapolation from 

weather radar rainfall estimations (Liguori and Rico-Ramirez, 2014)[4].  

III. Merged NWP with radar products have been developed which combine the high spatial 

temporal resolution of radar nowcasting with the longer lead times of NWP forecasts.  

Significant uncertainty is associated with forecasting precipitation (Bauer, et al., 2015)[4]. In 

radar nowcasting, uncertainty is due to a combination of uncertainty in the observations of 

the radar data and uncertainty in estimations in modelling the movement of the precipitation 

field in space and time (Liguori and Rico-Ramirez, 2014)[4]. In the NWP predictions 

uncertainty is due to model uncertainty, boundary and initial conditions. These uncertainties 

can be assessed using an ensemble (Palmer, 2000)(Chapter 4). A mismatch between the 

scale of the atmospheric model outputs and the required scale of the hydrological model can 

be solved by using downscaling techniques (Rodriquez-Rincon, et al., 2015)[4]. However, 

these techniques lead to uncertainties and have limitations (Fowler and Wilby, 2007)[4]. 

So important uncertainty introduced to flood forecasting is from the fact that meteorological 

forecasts are characterized by their own significant errors. It is unlikely that these can be 

effectively incorporated into the derivation of the conditional predictive probability of the flood 

forecast model. There is quite an amount of literature on this subject, but a final agreement 

on the best way for accounting this uncertainty has not yet been reached. Although, 

Meteorological practice is now progressively moving towards the provision of ensemble 

forecasts. The ensemble forecasts are a number of future rainfall projections from a starting  
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point where initial conditions are subject to alternative but physically feasible developments. 

The output can suggest a “most likely outcome”, as well as the range of possible outcomes. 

The predictive probability of the ensemble method is not fixed, for example in the relationship 

between maximum and mean rainfall intensity, but the format of the output does allow a 

probability assessment of the outcome (the forecast) in each case[3]. 

3-3-2 Measurement and observation errors 

Observations are essential to the calibration and validation of flood forecasting systems but 

are uncertain themselves (Gotzinger and Bardossy, 2007)[4]. Observed data are affected by 

both random and systematic errors varying over time. Frequently occurring uncertainties 

relating to the difference between the spatial and temporal characteristics of the observations 

compared to the model include:  

I. Uncertainty due to the interpolation techniques used for applying a point measurement to 

areal or volumetric model inputs (Gotzinger and Bardossy, 2007)[4].  

II. Uncertainty due to using a rating curve to convert water level into a discharge, for more 

details the reader is referred to McMillan et al., (2012) and Di Baldassarre and Montanari 

(2009)[4].  

III. Uncertainty in remote sensing data due to the sensing and retrieval techniques used (Li 

et al., 2016).  

IV. Uncertainty in radar rainfall observations due to the difficulties in distinguishing solid 

precipitation (e.g. snowflakes and hailstones), the effect of terrain blocking and inaccuracies 

in the reflectivity-rain rate relationship (McMillan et al., 2012).  

The reader is referred to (McMillan, et al., 2012)[4] and (Li et al., 2016)[4] for a comprehensive 

review of uncertainty in measurements. 

So input measurements from observations or estimates through fitted relationships are 

important source of errors. Input can include distributed or lumped rainfall, water levels or 

discharge estimated by a rating curve or weir equation. Errors in spatially averaged rainfall 

alone can easily be between 20 and 30 per cent[3], while water level measurements and 

discharges can be biased or affected by instrument errors[3].  
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To correctly estimate the “true” parameter values of a physical-process model, it is necessary 

to represent all the uncertain quantities in terms of their probability density curves, and the 

interaction or cumulative effect of all the probability functions. This is an almost impossible or 

atleast hard task[3,1]. 

3-3-3 Initial condition and boundary condition errors 

The initial conditions in flood forecasting systems include the soil moisture, snow cover, initial 

state of the rivers and other waterbodies in the catchment (Li et al., 2009; Madsen and 

Skotner, 2005)[4]. Not all initial conditions can be observed or will have data available. As a 

solution these conditions are estimated using models, which leads to uncertainty. The 

continuous simulation of a flood forecast system will also inherit state uncertainty from 

preceding time steps (Gotzinger and Bardossy, 2007)[4]. Initial conditions that are especially 

associated with large uncertainty are soil moisture and snow cover (Li et al., 2009)[4].  

Initial condition errors can affect not only physical-process model results, such as in the case 

of flood routing or flood inundation models, but also determine extremely strong errors and 

forecasting uncertainty in the case of rainfall– runoff models. As an example, whatever type 

of model (data-driven, conceptual or physically meaningful) is used, the soil moisture content 

at the outset of an event may change the predicted outflow by an order of magnitude. This 

type of error is more severe for event-type models, for which it is extremely difficult to infer 

the right soil moisture. With continuous-time models, using explicit updating of the water 

balance in the soil, effects are less marked[3]. 

Errors in boundary conditions, in general also defined as time-invariant conditions, also 

heavily affect the forecast, particularly when dealing with physical-process models, for which 

the description of the terrain, the channel cross-sections and slopes and the elevation of the 

dykes may radically change the results. Again, boundary condition errors may be 

compensated by parameter estimation. 

3-3-4 Model errors 

The inherent simplifications of the model to represent the more complex real system leads to 

uncertainty. For example, distributed hydrological models use polygons or grids to represent 

the catchment, this will lead to uncertainty, as the physical processes (e.g. related to soil 

structure) often occur on smaller scales than the model elements (Gotzinger and Bardossy, 
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2007). An overview of different models in hydrology is provided by Todini (2007) for 

hydrological models and (Knight, 2013). An example of the range of uncertainty in 

hydrological models is presented by Haddeland et al. (2011) where 11 global models were 

forced with the same data. The results had significantly different results ranging from 290 to 

457 mm/year depending upon the partitioning of evaporation and runoff year[4]. 

Models are always simple and schematic representations of reality: even the most 

sophisticated ones will inevitably embed schematization error. Moreover, model structures 

can also be wrong, for instance when a linear model is used as an approximation of a non-

linear phenomenon. This implies that a small or large model error will always be inherent in 

any model. In general, model errors can, to a greater or lesser extent, be compensated fully 

or in part by parameter calibration and this can be one of the reasons why estimated 

parameters may strongly disagree with physically meaningful values[3,1]. 

3-3-5 Model parameter errors 

Model parameters are related to the input data (Matott et al., 2009) but are not necessarily 

actual physical variables or are not directly measurable, which means they need to be 

calibrated to find values that are able to match the input-output behaviour of the model to the 

real system (Vrugt et al., 2003)[1]. The estimation or calibration processes inevitably leads to 

uncertainty. Parameter uncertainty will be different due to using different types of models 

available, e.g. conceptual, physical and black box. The parameters of a hydrological model 

(conceptual model) relate to catchment characteristics such as soil type, vegetation, 

antecedent moisture conditions. Variation in catchment characteristics leads to variation of 

the parameters. These local spatial heterogeneities and non-stationarities in the catchments 

affect the parameters, making them difficult to estimated effectively (Gupta et al., 2003). This 

leads to a lack of transferability of the parameters across the catchment, which will inevitably 

lead to uncertainty of the runoff prediction (Pappenberger et al., 2005). In the case of 

hydraulic models (physically based) local heterogeneities in the channel and floodplain 

geometry and cover will affect the parameters. Local parameters will need to be calibrated 

using observed data, of which are often limited. As a result there will be uncertainty with 

respect to the hydraulic model outputs, which can include flood inundation and the flood wave 

propagation (Pappenberger et al., 2005). Of course the parameters themselves can never 

represent reality which brings additional uncertainty due to e.g. equifinality (Beven and Freer, 

2001) . 
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If it is assumed that the model structure represents the physical behaviour of the system as 

effectively as possible at its representation scale, then it would also be assumed that a 

successful outcome could be achieved by providing the model with physically meaningful 

values for the parameters. These would only need small adjustments to cope with the 

noninfinitesimal scale at which the ruling equations are generally derived. This is, for 

instance, the case of a flood routing model: the Manning’s “n” can be more or less established 

on the basis of the known materials and the nature of the river bed and flood plain. In this 

case the forecasting uncertainty will be “conditional” on the model structure as well as on the 

parameters. However, if parameters are estimated regardless of the complexity of their 

statistical characteristics, they will inevitably become “sinks”, to encompass all the 

uncertainties. 

 

3-4 Quantifying uncertainty 

To understand, analyse and compare different types of uncertainty, quantification methods 

are helpful to classify them into different categories. Montanari (2007) distinguishes four types 

of uncertainty quantification methods:  

I. Approximate analytical methods; deriving uncertainty using known statistical properties of 

the system and input data[4,1].  

II. Approximate numerical methods/sensitivity analysis; define the system space as a 

collection of all possible modelling solutions that can be obtained by varying the parameters 

and model structure. Multiple runs can then be performed randomly sampling the system and 

input data space, the uncertainty can be derived from the collection of outputs[4,1].  

III. Techniques based on the statistical analysis of model error; statistical analysis of the 

model residuals of the forecast value compared to the observed values[4,1].  

IV. Non-probabilistic methods; based on random set theory, evidence theory, fuzzy set theory 

or possibility theory which provide possibilistic information[4,1].  

Methods from the first category are limited in flood forecasting due to the statistical properties 

of the input space being mostly unknown (Van Steenbergen et al., 2012). The fourth category 

is mostly relevant to situations with very limited data availability where human reasoning  

(possibilistic information) is used to assess the likelihood of a scenario taking place. 
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The most common methods in flood forecasting to quantify uncertainty fall into categories 

two and three. Methods do not necessarily fall into a single category, but can fall across 

several categories (Montanari, 2007)[4]. 

3-4-1 Approximate numerical methods and sensitivity analysis 

The approximate numerical methods and sensitivity analysis aims to move away from the 

principle of a single optimum model setup, in which the model setup includes both model 

structure and model parameters. The philosophy behind this is that there are multiple model 

structures and parameters within these structure, that will provide an equally acceptable 

representation of the complex environment (Beven and Freer, 2001). The defined system 

and input space should cover all model parameters, structure and input uncertainty. Random 

sampling over the space is applied, allowing multiple model runs to take place (Van 

Steenbergen and Willems, 2015) . Observed data are not required as a direct input in this 

methods. The multiple model runs that are part of this methods will require additional 

computational power and data management resources compared to traditional deterministic 

methods of forecasting.  

The main challenge when applying this method is defining the input and system space so 

that it will cover all aspects of uncertainty. Two approaches are available to this:  

1) importance sampling (Kuczera and Parent, 1998); and  

2) using a response surface with weights, the most common method to do this is the 

generalised likelihood uncertainty estimator GLUE (Beven and Freer, 2001).  

An example of using resampling and multiple model runs is where the uncertainty of all model 

components of the flood forecasting chain were quantified (Pappenberger et al., 2005); a 

probabilistic weather forecast containing 50 members for instant and one control was used. 

The parameter uncertainty of the rainfall-runoff model was quantified using GLUE. GLUE was 

also applied to the flood inundation model in order to get ten different sets of roughness 

coefficients for example. This uncertainty analysis was applied to the European Flood 

Awareness System (EFAS); more details about EFAS are provided in Figure 3-5. 
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Box 1 Uncertainty in the European Flood Awareness system  
Operating Authority: European Flood Alert system (EFAS)  
Models used: LISFLOOD, a GIS based distributed hydrological rainfall runoff routing model on a 5km grid with 
six hourly time steps. (Van Der Knijff et al., 2010)  
Forecast rainfall: Deterministic forecast rainfall from the Deutsche Wetterdienst, ECMWF deterministic and 
ensembles (VAREPS) and Ensembles from Consortium for Small-scale Modelling (COSMO).  
Uncertainty method: The uncertainty method is based on the atmospheric uncertainty which is quantified 
using ensembles and weather prediction from different models. The weather predictions from the different 
models and the ensembles are push through the hydrological model (LISFLOOD). Warnings are probabilistic 
based on return period threshold exceedance.  
Example output – Probabilistic threshold exceedance warnings. (ECMWF, 2016; Smith et al., 2016) More 

information available: https://www.efas.eu/user-information.html and Thielen 2009 

 

 

 

 

 

 

  

 

 

 

 

 

Fig. 3-5 Uncertainty in the European Flood Awareness system 
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3-4-2 Techniques based on the statistical analysis of model error 

Techniques based on the statistical analysis of model uncertainty use statistics derived from 

comparing the forecast values to observed values. An example of this is the probability 

distribution of model residuals which can be derived by comparing, for example, forecast 

value of river discharge to observations (Montanari and Brath, 2004). This method assumes 

that the future uncertainty can be represented using the model residuals of past forecasts. 

This method is attractive due to the low requirements with regards to computational power 

and data management, because multiple model runs are not required. When dealing with 

data scarce locations the application of this method is limited, due to observed data being 

directly used. From the perspective of observed data being in itself uncertain, this method 

has a limited ability quantify uncertainty correctly (Montanari and Brath, 2004). Assumptions 

regarding stationarity and ergodicity of the model residuals are often required, but remain 

disputed for different systems and for different states of a system. 

An example of the application of this method is given by Weerts et al. (2011) when they aim 

to quantify the predictive uncertainty of the rainfall-runoff and hydraulic forecasts. A 

retrospective quantile regression is applied to the hindcast water level. Independent sources 

of uncertainty are not considered, instead the effective uncertainty of the forecast process is 

considered, which can be a result of input or output uncertainty, model structural uncertainty 

or parameter uncertainty. The method has been tested for robustness on catchments across 

England and Wales of different sizes and hydrological characteristics (Weerts et al., 2011). 

3-4-3 Combined methods  

Other methods, such as approximate analytical methods; and non-probabilistic methods; 

based on random set theory, evidence theory, fuzzy set theory or possibility theory which 

provide possibilistic information can be used. 

The two methods model error and Approximate numerical methods and sensitivity analysis 

represent two different approaches to quantifying uncertainty in flood forecast systems. 

However, due to the fact that flood forecasting systems consist of multiple components, there 

are forecasting systems that use a combination of these two methods. An example is 

described by Krzysztofwicz and Herr (2001), where a Bayesian formulation of a Hydrological 

Uncertainty Processor (HUP) was used in combination with probabilistic precipitation 

forecast. The HUP aims to quantify the aggregate of all uncertainties arising from sources  
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other than those quantified by the probabilistic precipitation forecast. This system has been 

applied to the National Weather Service for a 1,430 km2 catchment in Pennsylvania, USA. 

The probabilistic precipitation forecast was generated using the numerical method, but the 

HUP is part of the model error method. 

 

3-5 Warnings and dissemination Uncertainties [2] 

It is also important to compute uncertainties in the forecasts and incorporate these as an 

integral part of warnings. The flood warning and dissemination process is a complex and 

critical component of the FFWS system that involves two distinct stages:  

(1) creation and transmission of forecasts and warnings to end users, and  

(2) response.  

A prompt and wide coverage of flood warning is the key to a successful FFWS, but an 

accurate forecast without adequate planning and communication will fail to achieve the 

intended responses by the exposed community, including the evacuation of vulnerable 

groups (e.g. very young or old and mobility-limited) who are unable to respond quickly to 

warnings, movement of assets (food, livestock, moveable goods, etc.; Wood et al. 2015) to 

safer locations, efficient and timely operation of flood regulation infrastructure, and initiation 

of flood fighting measures. Key factors in dissemination include packaging information into 

forms that are understandable and usable by end users, and the rapidity with which 

information is communicated to them[2]. 

Information must be targeted to the range of end users of the FFs, which include disaster 

managers, municipalities and local government officers, affected population, and 

infrastructure managers. Forecasts are also sent to decision makers to help visualize how an 

event is likely to develop, how significant it will be upon arrival, and what sections of the 

population will likely be at risk. Emergency services and media agencies need clear 

information that defines the hazard. Establishing a user group association or an inventory of 

users is important for a well-functioning and effective FFWS. 

Dissemination of forecasts and warnings may be achieved through a variety of 

communication methods, such as internet, flood bulletins to disaster management authorities 

(including police and fire departments), television, radio, telephone, bulk SMS, sirens, flags, 

and social media (i.e. Facebook,Twitter). In remote locations, local radio, if present, may be 
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the most reliable means for disseminating information in local language. Other locally 

available alert systems, such as community/ temple bells and loud speakers, can be an 

effective means and have shown success in Nepal and Bangladesh.  

Administrative barriers to data availability, across geopolitical boundaries and within the same 

boundary but across different agencies, also hamper FF. The consequences are that lead 

time is compromised and unreliable forecasts may be issued. 

The design of a FFWS is technical but its implementation is non-technical. The non-technical 

aspects are primarily logistics and administrative and include preparation, accumulation of 

needed amenities, plans for evacuation, facilities for transportation of people, issuance of 

warning, communication systems, electrical systems, shelter for people, food and clothing, 

medical supplies, manpower for help, counselling, among others. The effectiveness of an 

FFWS greatly depends on these nontechnical aspects. It is important that technical and non-

technical aspects are seamlessly integrated. Often, a simple FFWS may work well, provided 

non-technical issues are properly addressed. 

Communication systems, especially in developing countries, are often vulnerable in times of 

severe flooding and are rendered inoperative when they are needed most. In these areas, 

back-up communication systems and educational campaigns are needed to help the general 

public understand the various facets of floods so that they follow warnings and protect 

themselves even in the absence of any warning. During and after flooding, adequate relief 

measures must be provided at short notice, which requires that administrators have the 

technical, financial, and political resources to prepare in advance and respond quickly and 

effectively. Likewise, post-flood disaster, people should be helped so that they can become 

more resilient to future potential floods. 

3-5-1 Predictive uncertainty in operation [3] 

When dealing with flood emergency management, operational decisions may lead to 

dramatic consequences (economical losses and casualties). Nonetheless, emergency 

managers are required to take decisions under the stress of their uncertainty about the 

evolution of future events. Decision theory has developed into an extensive topic of 

mathematical study. One of the issues in the debate among hydrologists is how to 

demonstrate the benefits arising from the operational use of predictive uncertainty. The 

corollary of this is how to communicate uncertainty to the end-users, namely the decision  
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makers such as water and emergency managers, who may have a certain difficulty in 

perceiving these benefits.  

Statements such as “the probability of flooding within the next 12 hours is 67.5 per cent” is 

often meaningless to an end-user. The information has to answer the basic question “what 

are the expected benefits and drawbacks of issuing a flood alert for the next 12 hours?”. 

Therefore, hydrologists must define, in dialogue with end-users, subjective utility functions, 

which can be used to compute the expected benefits or damages contingent on the predictive 

density of the quantity of interest. A schematic example of such utility functions is shown in 

Figure 3-6, for the case of a flood alert (note that in this simple schematic example, casualties 

are not taken into account). 

 

 

 

 

 

 
 
 

Figure 3-6. The utility functions deriving from a 
flood alert problem: solid line represents cost and 
damage perceived by the end-user if an alert is 

issued; dashed line represents perceived cost and 
damage if an alert is not issued; Q* is the maximum 

discharge that may safely flow in the river[3] 

The dashed line represents the end-user perception of the damage (not necessarily the real 

one) that will occur if the dykes are overtopped, namely if Q > Q*, where Q* is the maximum 

discharge that may safely flow in the river. The solid line represents the perception of cost 

plus damages when an alert has been issued. As can be seen from Figure 3-6, if an alert is 

issued a cost must inevitably be incurred for mobilizing civil protection agents, alerting the 

population, laying sandbags and taking other necessary measures. However, the damage in 

that case will be smaller than in the “no-alert” case, due to the raised awareness of the 

incoming flood. 
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The decision on whether or not to issue an alert will then depend on the comparison of the 

“expected damage” for the two options, obtained by integrating the product of the cost 

function multiplied by the predictive uncertainty probability density function over all possible 

values of future discharge. It should be noted that the “expected damages” are a function of 

the actual future discharge that will happen, not of the discharge predicted by the model. By 

using the expected value of damage instead of the “model forecast”, the probability of false 

alarms as well as of missed alarms should be much reduced, as the uncertainty about the 

future discharge is taken into account. In addition, the peakier the predictive density is, the 

more reliable will the resulting decision be, so that improvements in forecasting, rather than 

looking for a better “deterministic” forecast, must essentially aim at reducing predictive 

uncertainty by whatever means is available. 

To show how predictive uncertainty can be used in operation, the Lake Como real-time 

management decision support system is given as one of the few existing successful 

examples (Todini and Bongioannini Cerlini, 1999)[3]. Lake Como is a natural lake in northern 

Italy closed at its exit and managed as a multi-purpose lake for flood control, irrigation and 

electric power production. Using a stochastic dynamic programming approach, a standard 

operating rule was developed on a 10 day basis to optimize long-term irrigation and energy 

production. However, when a flood is forecast, the reservoir manager needs to modify the 

standard operating rule. To achieve this, a utility function describing the damage perception 

of the manager was developed. Every morning an incoming flood forecast, together with its 

predictive uncertainty, is issued, and an optimal release, computed by minimizing the 

expected damage using the inflow predictive uncertainty, is then proposed. All this process 

is totally hidden from the water manager, who is aware only of the suggested optimal release 

and of its expected consequences (Fig 3-7). The performance of the system was assessed 

on the basis of a hindcast simulation for the 15-year period from 1 January 1981 to 31 

December 1995. The results are presented in the table 3-2. When applying the optimized 

rule, the lake level never fell below the acceptable lower limit of –0.4 metres, while historically 

this was observed on 214 days. In terms of Como flooding, over the 15 years the lake level 

has been recorded to be above the lower flood limit of 1.2 metres on 133 days, whereas the 

optimized rule reduced it to 75 days. A noticeable reduction also appears at higher lake levels. 

At 1.4 metres, when the traffic must stop in the main square of Como, the reduction is from 

71 to 52 days and at 1.73 metres, the legal definition of “normal flood” when people can claim 

compensation for their damage, the reduction is from 35 to 34 days.  
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Figure 3-7 The Lake Como operational decision support system. 

The system, on the basis of the expected 

value of inflows to the lake (light blue line) and its uncertainty (not shown, but used in the process) 

suggests to the water manager the optimal (red line – not shown) and possible (green line) releases that 

minimize the expected damage. It also shows the consequent expected lake level (blue line) 

for the following 10 days[3]. 
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Table 3-2 Summary of the results of a comparison between recorded water level occurrences and water 

deficits (historical) and the results of the operation rule based on the forecasting uncertainty (optimized) for 

the 15-year period from 1 January 1981 to 31 December 1995[3] 

 

 

 

 

 

 

 

 

  

At the same time, the irrigation water deficit decreased by an average of more than 100 × 

106 cubic metres per year. This result is exceptional, given that meeting irrigation demand 

implies higher lake levels, an objective conflicting with the need to reduce the frequency of 

flooding. 

It is quite interesting how the system was accepted by the end-user. At the end of 1997, the 

system was installed operationally and the Director of Consorzio dell’Adda, who is in charge 

of lake management, was invited to look at it but not to use it until he had confidence in its 

effectiveness. After six months the Director admitted that he had made a wrong decision on 

all of four occasions when the decision support system (DSS) had provided a solution. Ever 

since, the system has been in operation and used successfully. It has produced not only a 

reduction in the number, frequency and magnitude of Como flooding events, but also a 3 per 

cent increase in energy production and a large volume of extra water for irrigation. 

The above example shows that, if appropriately briefed and involved, the end-users will 

quickly become aware of the benefits arising from the use of predictive uncertainty, provided 

they are not asked to interpret the forecasting in statistical terms or the stochastic 

computation and optimization frequently required in problems in this type. 
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Considerable effort is still required to inform the end-users of the improvements obtainable 

without burdening them with the computational complexity.In this way, they will appreciate 

and receive the full benefits of an approach aimed at improving the success of their decision-

making. 

 

3-6 Conclusions 

Two main challenges have been identified as part of this review on the understanding and 

quantification of uncertainty for flood forecasting systems. The first challenge is that there is 

a lack of coherent terminology around uncertainty in flood forecasting. Calls for a more 

coherent terminology, for example by Montanari (2007)[4], have thus far proven difficult to 

achieve. It could be that the difficulty lies in finding terminology around uncertainty that will 

be applicable to the wide variety of systems within flood forecasting. Another difficulty lies in 

the fact that flood forecasting brings together a wide variety of different disciplines, including 

meteorologists, hydrologists, IT, electronic, mathematicians, civil and social scientists.  

The second challenge that has been identified is that the remaining mathematical and 

theoretical challenges in the quantification of uncertainty requires assumptions to be made 

that could be leading to a misrepresentation of the predictive uncertainty. More specifically 

for approximate numerical methods and sensitivity analysis creating a usable ensemble that 

covers the input and system space remains a challenge. In the case of techniques based on 

the statistical analysis of model uncertainty the questions around how representative the 

historical model residuals are for the future uncertainty remain unanswered.  

Opportunities to improve uncertainty quantification methods can be found for example in the 

field of data assimilation and in many cases the coming together of research form different 

disciplines can be instrumental in developing better methods[4]. 
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Chapter 4             Weather Forecasting 

 “James Glaisher  was an 
English meteorologist, aeronaut and astronomer.In 
1845, Glaisher published his dew point tables for 

the measurement of humidity. Glaisher made 
numerous ascents to measure the temperature 
and humidity of the atmosphere at its highest 

levels. Estimates suggest that he rose to more 
than 9,500 metres above sea level” 

 

4-1 History 

After first Glasher works, the history of numerical weather prediction (NWP) began in the 

1920s through the efforts of Lewis Fry Richardson, who used procedures originally developed 

by Vilhelm Bjerknes to produce by hand a six-hour forecast for the state of the atmosphere 

over two points in central Europe, taking at least six weeks to do so (Fig. 4-1). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4-1 Weather models use systems of differential equations based on the laws of physics, which are in 

detail fluid motion, thermodynamics, radiative transfer, and chemistry, and use a coordinate system which 

divides the planet into a 3D grid. Winds, heat transfer, solar radiation, relative humidity, phase changes of 
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water and surface hydrology are calculated within each grid cell, and the interactions with neighboring cells are 

used to calculate atmospheric properties in the future. 

It was not until the advent of the computer and computer simulations that computation time 

was reduced to less than the forecast period itself.  

The ENIAC (Electronic Numerical Integrator and Computer, University of Pennsylvania, its first program 

was a study of the feasibility of the thermonuclear weapon) was used to create the first weather 

forecasts via computer in 1950, based on a highly simplified approximation to the 

atmospheric governing equations. In 1954, Carl-Gustav Rossby's group at the Swedish 

Meteorological and Hydrological Institute used the same model to produce the first 

operational forecast (i.e., a routine prediction for practical use).  

Operational numerical weather prediction in the United States began in 1955 under the Joint 

Numerical Weather Prediction Unit (JNWPU), a joint project by the U.S. Air 

Force, Navy and Weather Bureau.] In 1956, Norman Phillips developed a mathematical 

model which could realistically depict monthly and seasonal patterns in the troposphere; this 

became the first successful climate model. Following Phillips' work, several groups began 

working to create general circulation models, (GCM, entire earth). The first general circulation 

climate model that combined both oceanic and atmospheric processes was developed in the 

late 1960s at the NOAA Geophysical Fluid Dynamics Laboratory. 

As computers have become more powerful, the size of the initial data sets has increased 

and newer atmospheric models have been developed to take advantage of the added 

available computing power. These newer models include more physical processes in the 

simplifications of the equations of motion in numerical simulations of the atmosphere. In 

1966, West Germany and the United States began producing operational forecasts based on 

primitive-equation models, followed by the United Kingdom in 1972 and Australia in 1977. 

The development of limited area (regional) models facilitated  advances in forecasting the 

tracks of tropical cyclones as well as air quality in the 1970s and 1980s. By the early 1980s 

models began to include the interactions of soil and vegetation with the atmosphere, which 

led to more realistic forecasts. 

The output of forecast models based on atmospheric dynamics is unable to resolve some details of 

the weather near the Earth's surface. As such, a statistical relationship between the output of a 

numerical weather model and the ensuing conditions at the ground was developed in the 1970s and  
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1980s, known as model output statistics (MOS). Starting in the 1990s, model ensemble forecasts 

have been used to help define the forecast uncertainty and to extend the window in which numerical 

weather forecasting is viable farther into the future than otherwise possible. 

 
4-2 Applications 

Some other applications of NWP except of flood forecasting, wind erosion, agriculture 
management and .. etc are: 
Wildfire modeling 
On a molecular scale, there are two main competing reaction processes involved in the 
degradation of cellulose, or wood fuels, in wildfires. When there is a low amount of moisture 
in a cellulose fiber, volatilization of the fuel occurs; this process will generate intermediate 
gaseous products that will ultimately be the source of combustion. When moisture is 
present—or when enough heat is being carried away from the fiber, charring occurs. 
The chemical kinetics of both reactions indicate that there is a point at which the level of 
moisture is low enough—and/or heating rates high enough—for combustion processes 
become self-sufficient. Consequently, changes in wind speed, direction, moisture, 
temperature, or lapse rate at different levels of the atmosphere can have a significant impact 
on the behavior and growth of a wildfire. Since the wildfire acts as a heat source to the 
atmospheric flow, the wildfire can modify local advection patterns, introducing a feedback 
loop between the fire and the atmosphere. A simplified two-dimensional model for the spread 
of wildfires that used convection to represent the effects of wind and terrain, as well 
as radiative heat transfer as the dominant method of heat transport led to reaction-diffusion 
systems of partial differential equations (Fig. 4-2). 
More complex models join numerical weather models or computational fluid 
dynamics models with a wildfire component which allow the feedback effects between the 
fire and the atmosphere to be estimated. The additional complexity in the latter class of 
models translates to a corresponding increase in their computer power requirements. In fact, 
a full three-dimensional treatment of combustion via direct numerical simulation at scales  
relevant for atmospheric modeling is not currently practical because of the excessive 
computational cost such a simulation would require. Numerical weather models have limited 
forecast skill at spatial resolutions under 1 kilometer (0.6 mi), forcing complex wildfire models 
to parameterize the fire in order to calculate how the winds will be modified locally by the 
wildfire, and to use those modified winds to determine the rate at which the fire will spread 
locally. Although models such as Los Alamos' FIRETEC solve for the concentrations of fuel 
and oxygen, the computational grid cannot be fine enough to resolve the combustion 
reaction, so approximations must be made for the temperature distribution within each grid 
cell, as well as for the combustion reaction rates themselves. 
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Fig. 4-2: A simple wildfire propagation model 

 
 

Climate modeling ( Global Climate Model) 

A General Circulation Model (GCM) is a mathematical model that can be used in computer 
simulations of the global circulation of a planetary atmosphere or ocean. An atmospheric 
general circulation model (AGCM) is essentially the same as a global numerical weather 
prediction model, and some (such as the one used in the UK Unified Model) can be 
configured for both short-term weather forecasts and longer-term climate predictions. Along 
with sea ice and land-surface components, AGCMs and oceanic GCMs (OGCM) are key 
components of global climate models, and are widely applied for understanding 
the climate and projecting climate change. For aspects of climate change, a range of man-
made chemical emission scenarios can be fed into the climate models to see how an 
enhanced greenhouse effect would modify the Earth's climate.  
Versions designed for climate applications with time scales of decades to centuries were 
originally created in 1969 by Syukuro Manabe and KirkBryan at  the Geophysical Fluid 
Dynamics Laboratory in Princeton, New Jersey. When run for multiple decades, 
computational limitations mean that the models must use a coarse grid that leaves smaller-
scale interactions unresolved (Fig 4-1).  
 
Ocean surface modeling ( Marine weather forecasting, Ocean dynamics, and Wind wave model) 
The transfer of energy between the wind blowing over the surface of an ocean and the 
ocean's upper layer is an important element in wave dynamics. The spectral wave transport 
equation is used to describe the change in wave spectrum over changing topography. It 
simulates wave generation, wave movement (propagation within a fluid), wave 
shoaling, refraction, energy transfer between waves, and wave dissipation. Since surface 
winds are the primary forcing mechanism in the spectral wave transport equation, ocean 
wave models use information produced by numerical weather prediction models as inputs 
to determine how much energy is transferred from the atmosphere into the layer at the 
surface of the ocean. 
Along with dissipation of energy through whitecaps and resonance between waves, surface 
winds from numerical weather models allow for more accurate predictions of the state of the  
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sea surface (Fig. 4-3). 
  
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4-3 NOAA Wavewatch III 120-hour wind and wave forecast for the North Atlantic 
 

 
Tropical cyclone forecasting 
Tropical cyclone forecasting also relies on data provided by numerical weather models. 
Three main classes of tropical cyclone guidance models exist: 
1-Statistical models are based on an analysis of storm behavior using climatology, and 
correlate a storm's position and date to produce a forecast that is not based on the physics 
of the atmosphere at the time. 
2- Dynamical models are numerical models that solve the governing equations of fluid flow 
in the atmosphere; they are based on the same principles as other limited-area numerical 
weather prediction models but may include special computational techniques such as 
refined spatial domains that move along with the cyclone.  
3-Models that use elements of both approaches are called statistical-dynamical models. 
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In 1978, the first hurricane-tracking model based on atmospheric dynamics—the movable 
fine-mesh (MFM) model—began operating. Within the field of tropical cyclone track 
forecasting, despite the ever-improving dynamical model guidance which occurred with 
increased computational power, it was not until the 1980s when numerical weather prediction 
showed skill, and until the 1990s when it consistently outperformed statistical or simple 
dynamical models. Predictions of the intensity of a tropical cyclone based on numerical 
weather prediction continue to be a challenge, since statistical methods continue to show 
higher skill over dynamical guidance. 
 
Air quality modeling (Atmospheric dispersion modeling) 

Air quality forecasting attempts to predict when the concentrations of pollutants will attain 
levels that are hazardous to public health. The concentration of pollutants in the atmosphere 
is determined by their transport, or mean velocity of movement through the atmosphere, 
their diffusion, chemical transformation, and ground deposition. In addition to pollutant 
source and terrain information, these models require data about the state of the fluid flow in 
the atmosphere to determine its transport and diffusion. Meteorological conditions such 
as thermal inversions can prevent surface air from rising, trapping pollutants near the 
surface, which makes accurate forecasts of such events crucial for air quality modeling. 
Urban air quality models require a very fine computational mesh, requiring the use of high-
resolution mesoscale weather models; in spite of this, the quality of numerical weather 
guidance is the main uncertainty in air quality forecasts. 
 
4-3 Numerical weather prediction  
Weather Forecasters, who to interpret results of the various numerical weather prediction 

(NWP) models. Numerical weather prediction models, or NWP, solve a complex set of 

mathematical equations that are based on the physics that drives how the air moves and 

how heat and moisture are exchanged throughout the atmosphere. 

Numerical Weather Prediction (NWP) uses the power of computers to make a forecast. A 

forecaster examines how the features predicted by the computer will interact to produce the 

day's weather. The NWP method is flawed in that the equations used by the models to simulate the 

atmosphere are not precise. So uncertainty analysis in input data is a vital step. 
Weather models use systems of differential equations based on the laws of physics, which are in 

detail fluid motion, thermodynamics, radiative transfer, and chemistry, and use a coordinate system 

which divides the planet into a 3D grid(Fig4-4), Winds, heat transfer, solar radiation, relative 

humidity, phase changes of water and surface hydrology (snow, ice, evaporation,…) are calculated 

within each grid cell, and the interactions with neighboring cells are used to calculate atmospheric 

properties in the future. 
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Fig 4-4 Weather forecast modeling 

The two best-known NWP models are the National Weather Service’s Global Forecast 

System, or GFS, and the European Center for Medium-Range Weather Forecast, known as 

the ECMWF model. They are also known as the American and European models, 

respectively. Generally speaking, the European model has produced the most accurate 

global weather forecasts. 

If physics drives these models, how can these NWP models result in different weather 

predictions? Because of the complexity of the mathematical equations, each model has to 

make some approximations, and these approximations may differ. In addition, each model 

assimilates observations a bit differently. 

A numerical forecast is only as accurate as the observations that go into the forecast at the 

beginning of its run, also known as the “initial conditions.” Because weather moves from one 

place to another rapidly, tomorrow’s weather is influenced by today’s weather far upstream, 

and next week’s weather can be affected by today’s weather a continent away. For this 

reason, forecasters need lots of worldwide data. Today we have global sources of data of 

many different types to give the forecast the best possible start. 
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Mathematical models based on the same physical principles can be used to generate either 

short-term weather forecasts or longer-term climate predictions; the latter are widely applied 

for understanding and projecting climate change. The improvements made to regional 

models have allowed for significant improvements in tropical cyclone track and air 

quality forecasts; however, atmospheric models perform poorly at handling processes that 

occur in a relatively constricted area, such as wildfires. 

Manipulating the vast datasets and performing the complex calculations necessary to modern 

numerical weather prediction requires some of the most powerful supercomputers in the 

world. Even with the increasing power of supercomputers, the forecast skill of numerical 

weather models extends to only about six days.  

Factors affecting the accuracy of numerical predictions include the density and quality of 

observations used as input to the forecasts, along with deficiencies in the numerical models 

themselves. Post-processing techniques such as model output statistics (MOS) have been 

developed to improve the handling of errors in numerical predictions. A more fundamental 

problem lies in the chaotic nature of the partial differential equations (PDE) that govern the 

atmosphere. A partial differential equation (PDE) for the function u(x1,… xn) is an equation 

of the form: 

 

 

 

 

 

 

It is impossible to solve these equations exactly, and small errors grow with time (doubling 
about every five days). Present understanding is that this chaotic behavior limits accurate 
forecasts to about 14 days even with accurate input data and a flawless model. In addition, 
the partial differential equations used in the model need to be supplemented 
with parameterizations for solar radiation, moist processes (clouds and precipitation), heat 
exchange, soil, vegetation, surface water, and the effects of terrain. In an effort to quantify 
the large amount of inherent uncertainty remaining in numerical predictions, ensemble 
forecasts have been used since the 1990s to help gauge the confidence in the forecast, and 
to obtain useful results farther into the future than otherwise possible. This approach analyzes 
multiple forecasts created with an individual forecast model or multiple models. 
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4-3-1 Weather observations 
The World Meteorological Organization acts to standardize the instrumentation, observing 
practices and timing of these observations worldwide. Stations either report hourly 

in METAR reports, or every six hours in SYNOP reports. A number of global and 
regional forecast models are run in different countries worldwide, using current 
weather observations relayed from radiosondes, weather satellites, Radar and 
other observing systems as inputs. These observations are irregularly spaced, so they 

are processed by data assimilation and objective analysis methods, which perform quality 
control and obtain values at locations usable by the model's mathematical algorithms. The 
data are then used in the model as the starting point for a forecast.  
 
4-3-1-1 Weather satellites 
 
Information from weather satellites (Fig. 4-5) is used where traditional data sources are not 
available or this data is vital. Satellites can be polar orbiting, covering the entire Earth 
asynchronously, or geostationary, hovering over the same spot on the equator (Fig. 4-6). 
 

 
 
 
 
 
 
 
 
 

Fig. 4-5 GOES-8, A United States weather satellite 

 
 
 
 
 
 
 
 
 
 
 

Fig. 4-6 weather satellite: Polar orbit weather satellite (Left), Two geostationary satellites in the same orbit (Right) 
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Geostationary weather satellites orbit the Earth above the equator at altitudes of 35,880 km 
(22,300 miles). Because of this orbit, they remain stationary with respect to the rotating Earth 
and thus can record or transmit images of the entire hemisphere below continuously with 
their visible-light and infrared sensors. The news media use the geostationary photos in their 
daily weather presentation as single images or made into movie loops. Several geostationary 
meteorological spacecraft are in operation. The United States' GOES series has three in 
operation: GOES-15, GOES-16 and GOES-17. GOES-16 and-17 remain stationary over the 
Atlantic and Pacific Oceans, respectively. GOES-15 has retired in July 2019. 
Polar orbiting weather satellites circle the Earth at a typical altitude of 850 km (530 miles) in 
a north to south (or vice versa) path, passing over the poles in their continuous flight. Polar 
orbiting weather satellites are in sun-synchronous orbits, which means they are able to 
observe any place on Earth and will view every location twice each day with the same general 
lighting conditions due to the near-constant local solar time. Polar orbiting weather satellites 
offer a much better resolution than their geostationary counterparts due their closeness to 
the Earth. The United States has the NOAA series of polar orbiting meteorological satellites, 
presently NOAA-15, NOAA-18 and NOAA-19 (POES) and NOAA-20 (JPSS). 
Meteorological satellites see more than clouds: city lights, fires, effects of pollution, auroras, 
sand and dust storms, snow cover, ice mapping, boundaries of ocean currents, energy flows, 
volcanic ash cloudetc, and also El Niño and its effects on weather are monitored daily from 
satellite images. The Antarctic ozone hole is mapped from weather satellite data too. 
Observation is typically made via different 'channels' of the electromagnetic spectrum, in 
particular, the visible and infrared portions. 
The United States Department of Defense's Meteorological Satellite (DMSP) can "see" the 
best of all weather vehicles with its ability to detect objects almost as 'small' as a huge oil 
tanker. In addition, of all the weather satellites in orbit, only DMSP can "see" at night in the 
visual. Some of the most spectacular photos have been recorded by the night visual sensor; 
city lights, volcanoes, fires, lightning, meteors, oil field burn-offs, as well as the Aurora 
Borealis and Aurora Australis have been captured by this 450-mile-high space vehicle's low 
moonlight sensor. 
 
4-3-1-2 Radiosondes 
A radiosonde is an automatic radio transmitter in the meteorological aids service usually 
carried on an aircraft, free balloon, kite or parachute, and which transmits meteorological 
data. Each radio transmitter shall be classified by the radio communication service in which 
it operates permanently or temporarily. 
So ,a radiosonde is a battery-powered telemetry instrument carried into the atmosphere 
usually by a weather balloon that measures various atmospheric parameters and transmits 
them by radio to a ground receiver. Modern radiosondes measure or calculate the following 
variables:  
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altitude, pressure, temperature, relativehumidity, wind (both windspeed and winddirection), 
cosmic ray readings at high altitude and geographical position (latitude/longitude). 
Radiosondes measuring ozone concentration are known as ozonesondes.The main inputs 
from country-based weather services are observations from  this devices often based on 
weather balloons that measure various atmospheric parameters and transmits them to a fixed 
receiver, as well as from weather satellites. Sites launch radiosondes in weather balloons 
which rise through the troposphere and well into the stratosphere. 
Radiosondes may operate at a radio frequency of 403 MHz or 1680 MHz. A radiosonde 
whose position is tracked as it ascends to give wind speed and direction information is called 
a rawinsonde ("radar wind -sonde"). Most radiosondes have radar reflectors and are 
technically rawinsondes. A radiosonde that is dropped from an airplane and falls, rather than 
being carried by a balloon is called a dropsonde. 
Worldwide there are about 1,300 radiosonde launch sites. Most countries share data with the 
rest of the world through international agreements. Nearly all routine radiosonde launches 
occur 45 minutes before the official observation time of 0000 UTC and 1200 UTC, so as to 
provide an instantaneous snapshot of the atmosphere. This is especially important 
for numerical modeling. In the United States the National Weather Service is tasked with 
providing timely upper-air observations for use in weather forecasting, severe 
weather watches and warnings, and atmospheric research. The National Weather Service 
launches radiosondes from 92 stations in North America and the Pacific Islands twice daily. 
It also supports the operation of 10 radiosonde sites in the Caribbean. 
Raw upper air data is routinely processed by supercomputers running numerical models. 
Forecasters often view the data in a graphical format, plotted on thermodynamic 
diagrams such as Skew-T log-P diagrams, Tephigrams, and or Stüve diagrams, all useful for 
the interpretation of the atmosphere's vertical thermodynamics profile of temperature and 
moisture as well as kinematics of vertical wind profile. 
Radiosonde data is a crucially important component of numerical weather prediction. 
Because a sonde may drift several hundred kilometers during the 90- to 120-minute flight, 
there may be concern that this could introduce problems into the model 
initialization. However, this appears not to be so except perhaps locally in jet stream regions 
in the stratosphere. 
 
4-3-1-3 Weather radar 

Weather radar, also called weather surveillance radar (WSR) and Doppler weather 

radar, is a type of radar used to locate precipitation, calculate its motion, and estimate its 

type (rain, snow, hail etc.). Modern weather radars are mostly pulse-Doppler radars, capable 

of detecting the motion of rain droplets in addition to the intensity of the precipitation. Both 

types of data can be analyzed to determine the structure of storms and their potential to  
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cause severe weather (Fig 4-7). 

After war II, surplus radars were used to detect precipitation. Since then, weather radar has 

evolved on its own and is now used by national weather services, research departments in 

universities (3), and in television stations' weather departments. Raw images are routinely 

used and specialized software can take radar data to make short term forecasts 

(Nowcasting)  of future positions and intensities of rain, snow, hail, and other weather 

phenomena. Radar output is even incorporated into numerical weather prediction models to 

improve analyses and forecasts. 

Another important use of radar data is the ability to assess the amount of precipitation that 

has fallen over large basins, to be used in hydrological calculations; such data is useful in 

flood control, sewer management and dam construction. The computed data from radar 

weather may be used in conjunction with data from ground stations. 

To know the vertical structure of clouds, in particular thunderstorms or the level of the melting 

layer, a vertical cross-section product of the radar data is available. This is done by displaying 

only the data along a line, from coordinates A to B, taken from the different angles scanned. 

 

 

 

 

 

 

 

 

Fig. 4-7 The radar beam path with height 
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4-3-1-4 Other observing systems and equipments 

Commerce provides pilot reports along aircraft routes and ship reports along shipping 

routes. Research projects use reconnaissance aircraft to fly in and around weather systems 

of interest, such as tropical cyclones. Reconnaissance aircraft are also flown over the open 

oceans during the cold season into systems which cause significant uncertainty in forecast 

guidance, or are expected to be of high impact from three to seven days into the future over 

the downstream continent. Main weather equpments are: 

 Anemometer 

 Atmometer 

 Barograph, Barometer 

 Ceiling balloon, Ceiling projector, Ceilometer 

 Dark adaptor goggles 

 Dewcell 

 Disdrometer 

 Dropsonde 

 Field mill 

 Heat flux sensor 

 Hygrometer 

 Ice accretion indicator 

 Lidar 

 Lightning detector 

 Nephelometer, Nephoscope 

 Pan evaporation 

 Pyranometer 

 Pyrheliometer 

 Radiosonde 

 Rain gauge 

 Snow gauge, Snowboard, Snow pillow 

 SODAR 

 Solarimeter 

 Sounding rocket 

 Stevenson screen 

 Sunshine recorder 

 Tethersonde 

 Thermo-hygrograph, Thermometer 

 Tide gauge 

 Transmissometer 

 Weather balloon, buoy, vane 

 Whole sky camera 

 Wind profiler 

 Windsock 

 Automatic weather station (AWS) 

 Hurricane Hunters 

 Mesonet 
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4-3-1-5 Data assimilation 

Models are initialized using this observed data. The irregularly spaced observations are 
processed by data assimilation and objective analysis methods, which perform quality control 
and obtain values at locations usable by the model's mathematical algorithms (usually an 
evenly spaced grid). The data are then used in the model as the starting point for a forecast. 

Data assimilation is a mathematical discipline that seeks to optimally combine theory 
(usually in the form of a numerical model) with observations. There may be a number of 
different goals sought, for example—to determine the optimal state estimate of a system, to 
determine initial conditions for a numerical forecast model, to interpolate sparse observation 
data using (e.g. physical) knowledge of the system being observed, to train numerical model 
parameters based on observed data. Depending on the goal, different solution methods may 
be used. Data assimilation is distinguished from other forms of machine learning, image 
analysis, and statistical methods in that it utilizes a dynamical model of the system being 
analyzed. 

Data assimilation initially developed in the field of numerical weather prediction. Numerical 
weather prediction models are equations describing the dynamical behavior of the 
atmosphere, typically coded into a computer program. In order to use these models to make 
forecasts, initial conditions are needed for the model that closely resemble the current state 
of the atmosphere. Simply inserting point-wise measurements into the numerical models did 
not provide a satisfactory solution. Real world measurements contain errors both due to the 
quality of the instrument and how accurately the position of the measurement is known. 
These errors can cause instabilities in the models that eliminate any level of skill in a forecast. 
Thus, more sophisticated methods were needed in order to initialize a model using all 
available data while making sure to maintain stability in the numerical model. Such data 
typically includes the measurements as well as a previous forecast valid at the same time the 
measurements are made. If applied iteratively, this process begins to accumulate information 
from past observations into all subsequent forecasts. 

Because data assimilation developed out of the field of numerical weather prediction, it 
initially gained popularity amongst the meteorologists. In fact, one of the most cited 
publication in all of the geosciences is an application of data assimilation to reconstruct the 
observed history of the atmosphere. 
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Data Assimilation Process 

Classically, data assimilation has been applied to chaotic dynamical systems that are too 
difficult to predict using simple extrapolation methods. The cause of this difficulty is that small 
changes in initial conditions can lead to large changes in prediction accuracy. This is 
sometimes known as the butterfly effect – the sensitive dependence on initial conditions in 
which a small change in one state of a deterministic nonlinear system can result in large 
differences in a later state. 

At any update time, data assimilation usually takes a forecast (also known as the first 
guess, or background information) and applies a correction to the forecast based on a set 
of observed data and estimated errors that are present in both the observations and the 
forecast itself. The difference between the forecast and the observations at that time is called 
the departure or the innovation (as it provides new information to the data assimilation 
process). A weighting factor is applied to the innovation to determine how much of a 
correction should be made to the forecast based on the new information from the 
observations. The best estimate of the state of the system based on the correction to the 
forecast determined by a weighting factor times the innovation is called the analysis. In one 
dimension, computing the analysis could be as simple as forming a weighted average of a 
forecasted and observed value. In multiple dimensions the problem becomes more difficult. 
Much of the work in data assimilation is focused on adequately estimating the appropriate 
weighting factor based on intricate knowledge of the errors in the system. 

The measurements are usually made of a real-world system, rather than of the model's 
incomplete representation of that system, and so a special function called the observation 
operator (usually depicted by h() for a nonlinear operator or H for its linearization) is needed 
to map the modeled variable to a form that can be directly compared with the observation. 

One of the common mathematical philosophical perspectives is to view data assimilation as 
a Bayesian estimation problem. From this perspective, the analysis step is an application 
of Bayes' theorem and the overall assimilation procedure is an example of recursive 
Bayesian estimation. However, the probabilistic analysis is usually simplified to a 
computationally feasible form. Advancing the probability distribution in time would be done 
exactly in the general case by the Fokker–Planck equation, but that is not feasible for high-
dimensional systems, so various approximations operating on simplified representations of 
the probability distributions are used instead. Often the probability distributions are assumed 
Gaussian so that they can be represented by their mean and covariance, which gives rise to 
the Kalman filter. 
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https://en.wikipedia.org/wiki/Kalman_filter


       

         Flood Forecasting Uncertainties 

 

 

 

1
4

9
 

Many methods represent the probability distributions only by the mean and input some pre-
calculated covariance. An example of a direct (or sequential) method to compute this is 
called optimal statistical interpolation, or simply optimal interpolation (OI). An alternative 
approach is to iteratively solve a cost function that solves an identical problem. These are 
called variational methods, such as 3D-Var and 4D-Var. Typical minimization algorithms are 
the Conjugate gradient method or the Generalized minimal residual method. The Ensemble 
Kalman filter is sequential method that uses a Monte Carlo approach to estimate both the 
mean and the covariance of a Gaussian probability distribution by an ensemble of 
simulations. More recently, hybrid combinations of ensemble approaches and variational 
methods have become more popular (e.g. they are used for operational forecasts both at the 
European Centre for Medium-Range Weather Forecasts (ECMWF) and at the NOAA 
National Centers for Environmental Prediction (NCEP)). 

In numerical weather prediction applications, data assimilation is most widely known as a 
method for combining observations of meteorological variables such 
as temperature and atmospheric pressure with prior forecasts in order to initialize numerical 
forecast models. 
The atmosphere is a fluid. The idea of numerical weather prediction is to sample the state of 

the fluid at a given time and use the equations of fluid dynamics and thermodynamics to 

estimate the state of the fluid at some time in the future. The process of entering observation 

data into the model to generate initial conditions is called initialization. On land, terrain maps 

available at resolutions down to 1 kilometer (0.6 mi) globally are used to help model 

atmospheric circulations within regions of rugged topography, in order to better depict 

features such as downslope winds, mountain waves and related cloudiness that affects 

incoming solar radiation.The main inputs from country-based weather services are 

observations from devices (called radiosondes) in weather balloons that measure various 

atmospheric parameters and transmits them to a fixed receiver, as well as from weather 

satellites. The World Meteorological Organization acts to standardize the instrumentation, 

observing practices and timing of these observations worldwide. Stations either report hourly 

in METAR reports, or every six hours in SYNOP reports. These observations are irregularly 

spaced, so they are processed by data assimilation and objective analysis methods, which 

perform quality control and obtain values at locations usable by the model's mathematical 

algorithms. 

In 1922, Lewis Fry Richardson published the first attempt at forecasting the weather 

numerically. Using a hydrostatic variation of Bjerknes's primitive equations, Richardson 

produced by hand a 6-hour forecast for the state of the atmosphere over two points in central  
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Europe, taking at least six weeks to do so. His forecast calculated that the change in surface 

pressure would be 145 millibars (4.3 inHg), an unrealistic value incorrect by two orders of 

magnitude. The large error was caused by an imbalance in the pressure and wind velocity 

fields used as the initial conditions in his analysis, indicating the need for a data assimilation 

scheme. 

Originally "subjective analysis" had been used in which NWP forecasts had been adjusted by 
meteorologists using their operational expertise. Then "objective analysis" (e.g. Cressman 
algorithm) was introduced for automated data assimilation. These objective methods used 
simple interpolation approaches, and thus were 3DDA methods. 

Later, 4DDA methods, called "nudging", were developed, such as in the MM5 model. They 
are based on the simple idea of Newtonian relaxation (the 2nd axiom of Newton). They 
introduce into the right part of dynamical equations of the model a term that is proportional to 
the difference of the calculated meteorological variable and the observed value. This term 
that has a negative sign keeps the calculated state vector closer to the observations. Nudging 
can be interpreted as a variant of the Kalman-Bucy filter (a continuous time version of 
the Kalman filter) with the gain matrix prescribed rather than obtained from covariances. 
A major development was achieved by L. Gandin (1963) who introduced the "statistical 
interpolation" (or "optimal interpolation") method, which developed earlier ideas of 
Kolmogorov. This is a 3DDA method and is a type of regression analysis which utilizes 
information about the spatial distributions of covariance functions of the errors of the "first 
guess" field (previous forecast) and "true field". These functions are never known. However, 
the different approximations were assumed. 
The optimal interpolation algorithm is the reduced version of the Kalman filtering (KF) 
algorithm and in which the covariance matrices are not calculated from the dynamical 
equations but are pre-determined in advance. 
Attempts to introduce the KF algorithms as a 4DDA tool for NWP models came later. 
However, this was (and remains) a difficult task because the full version requires solution of 
the enormous number of additional equations (~N*N~10**12, where N=Nx*Ny*Nz is the size 
of the state vector, Nx~100, Ny~100, Nz~100 – the dimensions of the computational grid). 
To overcome this difficulty, approximate or suboptimal Kalman filters were developed. These 
include the Ensemble Kalman filter and the Reduced-Rank Kalman filters (RRSQRT).  
Another significant advance in the development of the 4DDA methods was utilizing 
the optimal control theory (variational approach) in the works of Le Dimet and Talagrand 
(1986), based on the previous works of J.-L. Lions and G. Marchuk, the latter being the first 
to apply that theory in the environmental modeling. The significant advantage of the 
variational approaches is that the meteorological fields satisfy the dynamical equations of the 
NWP model and at the same time they minimize the functional, characterizing their difference  
 

https://www.wikiwand.com/en/Atmospheric_pressure
https://www.wikiwand.com/en/Atmospheric_pressure
https://www.wikiwand.com/en/Bar_(unit)
https://www.wikiwand.com/en/Inch_of_mercury
https://www.wikiwand.com/en/MM5_(weather_model)
https://www.wikiwand.com/en/State_space_(controls)
https://www.wikiwand.com/en/Kalman-Bucy_filter
https://www.wikiwand.com/en/Kalman_filter
https://www.wikiwand.com/en/Regression_analysis
https://www.wikiwand.com/en/Covariance
https://www.wikiwand.com/en/Kalman_filtering
https://www.wikiwand.com/en/Ensemble_Kalman_filter
https://www.wikiwand.com/en/Optimal_control


       

         Flood Forecasting Uncertainties 

 

 

 

1
5

1
 

from observations. Thus, the problem of constrained minimization is solved. The 3DDA 
variational methods were developed for the first time by Sasaki (1958). 
As was shown by Lorenc (1986), all the above-mentioned 4DDA methods are in some limit 
equivalent, i.e. under some assumptions they minimize the same cost function. However, in 
practical applications these assumptions are never fulfilled, the different methods perform 
differently and generally it is not clear what approach (Kalman filtering or variational) is better. 
The fundamental questions also arise in application of the advanced DA techniques such as 
convergence of the computational method to the global minimum of the functional to be 
minimised. For instance, cost function or the set in which the solution is sought can be not 
convex. The 4DDA method which is currently most successful is hybrid incremental 4D-Var, 
where an ensemble is used to augment the climatological background error covariances at 
the start of the data assimilation time window, but the background error covariances are 
evolved during the time window by a simplified version of the NWP forecast model. This data 
assimilation method is used operationally at forecast centres such as the Met Office.  
Cost function 
The process of creating the analysis in data assimilation often involves minimization of a cost 
function. A typical cost function would be the sum of the squared deviations of the analysis 
values from the observations weighted by the accuracy of the observations, plus the sum of 
the squared deviations of the forecast fields and the analyzed fields weighted by the accuracy 
of the forecast. This has the effect of making sure that the analysis does not drift too far away 
from observations and forecasts that are known to usually be reliable.] 
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Data assimilation has been used, in the 1980s and 1990s, in several HAPEX (Hydrologic and 
Atmospheric Pilot Experiment) projects for monitoring energy transfers between the soil, 
vegetation and atmosphere. For instance: 

- the "Alpilles-ReSeDA" (Remote Sensing Data Assimilation) experiment, a European project  
 

Data assimilation methods are currently also used in other environmental forecasting 
problems, e.g. in hydrological forecasting. Bayesian networks may also be used in a data 
assimilation approach to assess natural hazards such as landslides.  
Data assimilation is a part of the challenge for every forecasting problem. The existing data 
assimilation methods such as many variants of ensemble Kalman filters and variational 
methods, well established with linear or near-linear models, are being assessed on non-linear 
models, as well as many new methods are being developed e.g. particle filters for high-
dimensional problems, hybrids data assimilation methods.  

Case study 
The Flosolver division at National Aerospace Laboratories (NAL) has developed a GCM code 
called as VARSHA. The initialisation of this forecasting system is presently done with the 
NCEP data. The weather being chaotic dynamical system these initial conditions have to be 
very accurate. In this the data assimilation plays a vital role in obtaining accurate initial 
conditions. The aim of the present work was to develop data assimilation system for VARSHA 
code of NAL for improving its weather forecast. This report presents the work done in this 
direction under the NMITLI project Mesoscale modelling for monsoon related predictions - 
Phase II, Data Assimilation for better weather forecast [4]. 

The 4DVAR and EnKF are the advanced data assimilation systems presently under lot of 
study. 4D VAR represents the variational approach and EnKF represents ensemble 
approach. 4DVar has been used in practical applications at ECMWF. It has been studied 
extensively by many people. The EnKF since its introduction by Evensen has been a subject 
of lot of study. EnKF has been successfully applied to extensive number of problems. The 
method is simple conceptually and in implementation. The EnKF unlike variational approach 
does not require tangent linear model and adjoint equations. The memory requirement is also 
quite manageable. Hence we decided on using EnKF in our work. 

The Flosolver weather forecast code VARSHA uses initial conditions obtained from NCEP. 
The NCEP keeps publishing this data on a regular basis. In this project it is sought to develop 
tools so that VARSHA can be used to obtain initial conditions. This helps in assimilating more 
the observational data that is generated in India and the data collected from elsewhere in the 
world as well. Hence the project was envisaged to develop a data assimilation system for the  
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VARSHA code in the Flosolver division of National Aerospace Laboratories, Bangalore. The 
deliverables were planned as, 

I At the end of one year an indigenously developed Data Assimilation (DA) code working on a model problem. 
II At the end of two years DA code will be ready (April 2009), which will be able to assimilate data in the 
VARSHA code. 
 

Ensemble Kalman Filter (EnkF)  

As mentioned earlier, based on the literature studies and information collection from various 
data assimilation centres we chose EnKF as the technique to be employed for data 
assimilation in our work. The algorithm is briefly explained here. For complete details one can 
refer to Evensen’s papers in the reference section [5]. 
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is the ensemble of perturbations used for measurements. In terms of perturbation matrices 
we have finally the EnKF analysis step as, 
 
 
 
 
Solution of the above equation will involve computation of following matrices: 
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where U –left Eigen vector, V- Right Eigen vector and Σ- contains Eigen vectors on diagonal. From above 

equation it is easier to see that now inverse can be easily computed. This is the most crucial part of Kalman 

update equation. In most practical cases, the rank of the matrix can be N (no. Of ensemble members) or less i.e., 

rank deficiency can cause troubles in finding inverse. In such case we calculate pseudo inverse, again using DA 

code (SVD-DA to NWP problems along with VARSHA code. [4,5]. (Fig 4.8). 

 

 

Fig 4.8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 4.9 Application of DA code (SVD-DA) to NWP problem aling with VARSHA code [4] 
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Other uses include trajectory estimation for the Apollo program, GPS, and atmospheric 
chemistry. 
 

4-3-2 Computations and CFD 
An atmospheric model is a computer program that produces meteorological information for 
future times at given locations and altitudes. Within any modern model is a set of equations, 
known as the primitive equations, used to predict the future state of the atmosphere. These 
equations—along with the ideal gas law—are used to evolve the density, pressure, 
and potential temperature scalar fields and the air velocity (wind) vector field of the 
atmosphere through time. Additional transport equations for pollutants and 
other aerosols are included in some primitive-equation high-resolution models as well. The 
equations used are nonlinear partial differential equations which are impossible to solve 
exactly through analytical methods, with the exception of a few idealized cases. Therefore, 
numerical methods obtain approximate solutions[1]. Different models use different solution 
methods: some global models and almost all regional models use finite difference 
methods (Computational Fluid Dynamic) for all three spatial dimensions, while other global 
models and a few regional models use spectral methods for the horizontal dimensions and 
finite-difference methods in the vertical. 
These equations are initialized from the analysis data and rates of change are determined 
(4-3-1). These rates of change predict the state of the atmosphere a short time into the future; 
the time increment for this prediction is called a time step. This future atmospheric state is 
then used as the starting point for another application of the predictive equations to find new 
rates of change, and these new rates of change predict the atmosphere at a yet further time 
step into the future. This time stepping is repeated until the solution reaches the desired 
forecast time. The length of the time step chosen within the model is related to the distance 
between the points on the computational grid, and is chosen to maintain numerical 
stability. Time steps for global models are on the order of tens of minutes, while time steps 
for regional models are between one and four minutes. The global models are run at varying 
times into the future. The UKMET Unified Model is run six days into the future, while 
the European Centre for Medium-Range Weather Forecasts' Integrated Forecast 
System and Environment Canada's Global Environmental Multiscale Model both run out to 
ten days into the future, and the Global Forecast System model run by the Environmental 
Modeling Center is run sixteen days into the future. The visual output produced by a model 
solution is known as a prognostic chart, or prog Fig 4.10). 
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Fig 4.10: A prognostic chart of the of the weather in the United States 36 hours into the future and 96-hour 
forecast of 850 mbar geopotential height and temperature from the Global Forecast System 

 
Initialization 
The process of entering observation data into the model to generate initial conditions is 
called initialization. On land, terrain maps available at resolutions down to 1 kilometer (0.6 mi) 
globally are used to help model atmospheric circulations within regions of rugged topography, 
in order to better depict features such as downslope winds, mountain waves and related 
cloudiness that affects incoming solar radiation.  These observations are irregularly spaced, 
so they are processed by data assimilation and objective analysis methods, which perform 
quality control and obtain values at locations usable by the model's mathematical 
algorithms. The data are then used in the model as the starting point for a forecast.  
A variety of methods are used to gather observational data for use in numerical models. Sites 
launch radiosondes in weather balloons which rise through the troposphere and well into 
the stratosphere. Information from weather satellites is used where traditional data sources 
are not available. Commerce provides pilot reports along aircraft routes and ship reports 
along shipping routes. 
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Research projects use reconnaissance aircraft to fly in and around weather systems of 
interest, such as tropical cyclones. Reconnaissance aircraft are also flown over the open 
oceans during the cold season into systems which cause significant uncertainty in forecast 
guidance, or are expected to be of high impact from three to seven days into the future over 
the downstream continent. Sea ice began to be initialized in forecast models in 1971. Efforts 
to involve sea surface temperature in model initialization began in 1972 due to its role in 
modulating weather in higher latitudes of the Pacific.  
 
Parameterization 
Some meteorological processes are too small-scale or too complex to be explicitly included 
in numerical weather prediction models. Parameterization is a procedure for representing 
these processes by relating them to variables on the scales that the model resolves. For 
example, the gridboxes in weather and climate models have sides that are between 5 
kilometers (3 mi) and 300 kilometers (200 mi) in length. A typical cumulus cloud has a scale 
of less than 1 kilometer (0.6 mi), and would require a grid even finer than this to be 
represented physically by the equations of fluid motion. Therefore, the processes that 
such clouds represent are parameterized, by processes of various sophistication. In the 
earliest models, if a column of air within a model gridbox was conditionally unstable 
(essentially, the bottom was warmer and moister than the top) and the water vapor content 
at any point within the column became saturated then it would be overturned (the warm, moist 
air would begin rising), and the air in that vertical column mixed. More sophisticated schemes 
recognize that only some portions of the box might convect and that entrainment and other 
processes occur. Weather models that have gridboxes with sizes between 5 and 25 
kilometers (3 and 16 mi) can explicitly represent convective clouds, although they need to 
parameterize cloud microphysics which occur at a smaller scale. The formation of large-scale 
(stratus-type) clouds is more physically based; they form when the relative humidity reaches 
some prescribed value. Sub-grid scale processes need to be taken into account. Rather than 
assuming that clouds form at 100% relative humidity, the cloud fraction can be related to a 
critical value of relative humidity less than 100%, reflecting the sub grid scale variation that 
occurs in the real world. 
The amount of solar radiation reaching the ground, as well as the formation of cloud droplets 
occur on the molecular scale, and so they must be parameterized before they can be included 
in the model. Atmospheric drag produced by mountains must also be parameterized, as the 
limitations in the resolution of elevation contours produce significant underestimates of the 
drag. This method of parameterization is also done for the surface flux of energy between 
the ocean and the atmosphere, in order to determine realistic sea surface temperatures and 
type of sea ice found near the ocean's surface. Sun angle as well as the impact of multiple 
cloud layers is taken into account. Soil type, vegetation type, and soil moisture all determine 
how much radiation goes into warming and how much moisture is drawn up into the adjacent 
atmosphere, and thus it is important to parameterize their contribution to these processes. 
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Within air quality models, parameterizations take into account atmospheric emissions from 
multiple relatively tiny sources (e.g. roads, fields, factories) within specific grid boxes. 
 
Domains 
The horizontal domain of a model is either global, covering the entire Earth, or regional, 
covering only part of the Earth. Regional models (also known as limited-area models, or 
LAMs) allow for the use of finer grid spacing than global models because the available 
computational resources are focused on a specific area instead of being spread over the 
globe. This allows regional models to resolve explicitly smaller-scale meteorological 
phenomena that cannot be represented on the coarser grid of a global model. Regional 
models use a global model to specify conditions at the edge of their domain (boundary 
conditions) in order to allow systems from outside the regional model domain to move into its 
area. Uncertainty and errors within regional models are introduced by the global model used 
for the boundary conditions of the edge of the regional model, as well as errors attributable 
to the regional model itself.  
 

Horizontal coordinates 
Horizontal position may be expressed directly in geographic coordinates (latitude and longitude) for global 

models or in a map projection planar coordinates for regional models. The German weather service is using for 

its global ICON model (icosahedral non-hydrostatic global circulation model) a grid based on a regular 

icosahedron. Basic cells in this grid are triangles instead of the four corner cells in a traditional latitude-longitude 

grid. The advantage is that, different from a latitude-longitude cells are everywhere on the globe the same size. 

Disadvantage is that equations in this non rectangular grid are more complicated. 

 

Vertical coordinates 
The vertical coordinate is handled in various ways. Lewis Fry Richardson's 1922 model used geometric height 

as the vertical coordinate. Later models substituted the geometric coordinate with a pressure coordinate system, 

in which the geopotential heights of constant-pressure surfaces become dependent variables, greatly simplifying 

the primitive equations. This correlation between coordinate systems can be made since pressure decreases with 

height through the Earth's atmosphere. The first model used for operational forecasts, the single-layer barotropic 

model, used a single pressure coordinate at the 500-millibar (about 5,500 m (18,000 ft)) level, and thus was 

essentially two-dimensional. High-resolution models—also called mesoscale models—such as the Weather 

Research and Forecasting model tend to use normalized pressure coordinates referred to as sigma 

coordinates. This coordinate system receives its name from the independent variable used to scale atmospheric 

pressures with respect to the pressure at the surface, and in some cases also with the pressure at the top of the 

domain. 

 

4-3-3 MOS 
The output of forecast models based on atmospheric dynamics is unable to resolve some 
details of the weather near the Earth's surface. As such, a statistical relationship between the  
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output of a numerical weather model and the ensuing conditions at the ground was developed 
in the 1970s and 1980s, known as model output statistics (MOS).  

Because forecast models based upon the equations for atmospheric dynamics do not 
perfectly determine weather conditions, statistical methods have been developed to attempt 
to correct the forecasts. Statistical models were created based upon the three-dimensional 
fields produced by numerical weather models, surface observations and the climatological 
conditions for specific locations. These statistical models are collectively referred to as model 
output statistics (MOS), and were developed by the National Weather Service for their suite 
of weather forecasting models in the late 1960s.  
Model output statistics differ from the perfect prog technique, which assumes that the output 
of numerical weather prediction guidance is perfect. MOS can correct for local effects that 
cannot be resolved by the model due to insufficient grid resolution, as well as model biases. 
Because MOS is run after its respective global or regional model, its production is known as 
post-processing. Forecast parameters within MOS include maximum and minimum 
temperatures, percentage chance of rain within a several hour period, precipitation amount 
expected, chance that the precipitation will be frozen in nature, chance for thunderstorms, 
cloudiness, and surface winds.  
 

4-3-4 Equations in weather forecasting 

The atmosphere is a fluid. As such, the idea of numerical weather prediction is to sample the 

state of the fluid at a given time and use the equations of fluid 

dynamics and thermodynamics to estimate the state of the fluid at some time in the future. 

In physics and engineering, fluid dynamics is a subdiscipline of fluid mechanics that 

describes the flow of fluids—liquids and gases. The foundational axioms of fluid dynamics 

are the conservation laws, specifically, conservation of mass, conservation of linear 

momentum, and conservation of energy (also known as First Law of Thermodynamics). 

These are based on classical mechanics and are modified in quantum 

mechanics and general relativity. They are expressed using the Reynolds transport theorem. 

A set of equations, known as the primitive equations, used to predict the future state of the 

atmosphere. These equations (the primitive equations that are still in use in numerical weather 

prediction and climate modeling, ) —along with the ideal gas law—are used to evolve 

the density, pressure, and potential temperature scalar fields and the 

air velocity (wind) vector field of the atmosphere through time. 
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The primitive equations are a set of nonlinear differential equations that are used to approximate 

global atmospheric flow and are used in most atmospheric models. They consist of three main sets of 

balance equations: 

1. A continuity equation: Representing the conservation of mass. 
2. Conservation of momentum: Consisting of a form of the Navier–Stokes equations that 

describe hydrodynamical flow on the surface of a sphere under the assumption that 
vertical motion is much smaller than horizontal motion (hydrostasis) and that the fluid 
layer depth is small compared to the radius of the sphere 

3. A thermal energy equation: Relating the overall temperature of the system to heat 
sources and sinks 

The primitive equations may be linearized to yield Laplace's tidal equations, 
an eigenvalue problem from which the analytical solution to the latitudinal structure of the 
flow may be determined. 
In general, nearly all forms of the primitive equations relate the five variables u, v, ω, T, W, 
and their evolution over space and time respectively: 

 The equations were first written down by Vilhelm Bjerknes, who was physicist and  

meteorologist (1951). 
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some equations in weather forecasting: 

 

 

 

 

 

 

 

 

 

 

 

 

 

The first term is equal to the change in temperature due to incoming solar radiation and 

outgoing longwave radiation, which changes with time throughout the day. The second, third, 

and fourth terms are due to advection. Additionally, the variable T with subscript is the change 

in temperature on that plane. Each T is actually different and related to its respective plane. 

This is divided by the distance between grid points to get the change in temperature with the 

change in distance. When multiplied by the wind velocity on that plane, the units kelvins per 

meter and meters per second give kelvins per second. The sum of all the changes in 

temperature due to motions in the x, y, and z directions give the total change in temperature 

with time. 
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This analytic solution is only possible when the primitive equations are linearized and 
simplified. Unfortunately many of these simplifications (i.e. no dissipation, isothermal 
atmosphere) do not correspond to conditions in the actual atmosphere. As a result, 
a numerical solution which takes these factors into account is often calculated using general 
circulation models and climate models. 
The analytic solution to the linearized primitive equations involves a sinusoidal oscillation in 

time and longitude, modulated by coefficients related to height and latitude for example: 
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Where s and σ are the zonal wave number and angular frequency, respectively. The solution 

represents atmospheric waves and tides. 

 

4-4 Weather forecastingTechniques 

Weather forecasting (formally since the 19th century ) is the application of science and 

technology to predict the conditions of the atmosphere for a given location and time. Weather 

forecasts are made by collecting quantitative data about the current state of the atmosphere 

at a given place and using meteorology to project how the atmosphere will change. Once 

calculated by hand based mainly upon changes in barometric pressure, current weather 

conditions, and sky condition or cloud cover, weather forecasting now relies on computer-

based models that take many atmospheric factors into account.[1] Human input is still required 

to pick the best possible forecast model to base the forecast upon, which involves pattern 

recognition skills, teleconnections (Climate anomalies and stationary and non-stationary 

effects-sea level pressure, sun effects, latitude circles and eddies, ENSO effects in 

temperature and rainfall,…), knowledge of model performance, and knowledge of model biases. 

The inaccuracy of forecasting is due to the chaotic (States of dynamical systems are often 

governed by deterministic laws that are highly sensitive to initial conditions, Edward Lorenz, 

2019 mathematician and meteorologist) nature of the atmosphere, the massive 

computational power required to solve the equations that describe the atmosphere, the error 

involved in measuring the initial conditions, and an incomplete understanding of atmospheric 

processes. Hence, forecasts become less accurate as the difference between current time 

and the time for which the forecast is being made (the range of the forecast) increases. The 

use of ensembles and model consensus help narrow the error and pick the most likely 

outcome. 

There are a variety of end uses to weather forecasts. Weather warnings are important 

forecasts because they are used to protect life and property. Forecasts based 

on temperature and precipitation are important to agriculture, and therefore to traders within 

commodity markets. Temperature forecasts are used by utility companies to estimate 

demand over coming days. On an everyday basis, people use weather forecasts to determine 

what to wear on a given day. Since outdoor activities are severely curtailed by heavy rain, 

snow and wind chill, forecasts can be used to plan activities around these events, and to plan 

ahead and survive them. In 2009, the US spent $5.1 billion on weather forecasting. 
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4-4-1- Weather lore 

Ancient weather forecasting methods usually relied on observed patterns of events, also 

termed pattern recognition or signs. For example, it might be observed that if the sunset was 

particularly red, the following day often (some uncertainty) brought fair weather. This 

experience accumulated over the generations to produce weather lore. However, not all of 

these predictions prove reliable, and many of them have since been found not to stand up to 

rigorous statistical testing. In IRAN’s villages people have many experiences of the signs 

(estimated more than 500 signs [1]) about weather phenomena shuch as cloud patterns, or 

rising water level in wells or  lunar phases or movement of winds relevant to rain events. 

Understanding local weather patterns, by saying, "When evening comes, you say, 'It will be 

fair weather, for the sky is red', and in the morning, 'Today it will be stormy, for the sky is red 

and overcast.' You know how to interpret the appearance of the sky, but you cannot interpret 

the signs of the times and other characteristics. 

The simplest method of forecasting the weather, persistence, relies upon today's conditions 

to forecast the conditions tomorrow. This can be a valid way of forecasting the weather when 

it is in a steady state, such as during the summer season in the tropics. This method of 

forecasting strongly depends upon the presence of a stagnant weather pattern. Therefore, 

when in a fluctuating weather pattern, this method of forecasting becomes inaccurate. It can 

be useful in both short range forecasts and long range forecasts.  

Along with pressure tendency, the condition of the sky is one of the more important 

parameters used to forecast weather in mountainous areas. Thickening of cloud cover or the 

invasion of a higher cloud deck is indicative of rain in the near future. High thin cirrostratus 

clouds can create halos around the sun or moon, which indicates an approach of a warm 

front and its associated rain. Morning fog portends fair conditions, as rainy conditions are 

preceded by wind or clouds that prevent fog formation. The approach of a line 

of thunderstorms could indicate the approach of a cold front. Cloud-free skies are indicative 

of fair weather for the near future. A bar can indicate a coming tropical cyclone. The use of 

sky cover in weather prediction has led to various weather lore over the centuries. 

The analog technique is a complex way (another type of weather lore) of making a forecast, 

requiring the forecaster to remember a previous weather event that is expected to be 

mimicked by an upcoming event. What makes it a difficult technique to use is that there is 

rarely a perfect analog for an event in the future. Some call this type of forecasting pattern 

https://en.wikipedia.org/wiki/Weather_lore
https://en.wikipedia.org/wiki/Lunar_phase
https://en.wikipedia.org/w/index.php?title=Long_range_weather_forecast&action=edit&redlink=1
https://en.wikipedia.org/wiki/Cloud
https://en.wikipedia.org/wiki/Cirrostratus_cloud
https://en.wikipedia.org/wiki/Cirrostratus_cloud
https://en.wikipedia.org/wiki/Halo_(optical_phenomenon)
https://en.wikipedia.org/wiki/Sun
https://en.wikipedia.org/wiki/Moon
https://en.wikipedia.org/wiki/Warm_front
https://en.wikipedia.org/wiki/Warm_front
https://en.wikipedia.org/wiki/Rain
https://en.wikipedia.org/wiki/Fog
https://en.wikipedia.org/wiki/Thunderstorm
https://en.wikipedia.org/wiki/Cold_front
https://en.wikipedia.org/wiki/Bar_(tropical_cyclone)
https://en.wikipedia.org/wiki/Weather_lore


       

         Flood Forecasting Uncertainties 

 

 

 

1
6

6
 

recognition. It remains a useful method of observing rainfall over data voids such as 

oceans, as well as the forecasting of precipitation amounts and distribution in the future. A 

similar technique is used in medium range forecasting, which is known as teleconnections, 

when systems in other locations are used to help pin down the location of another system 

within the surrounding regime. An example of teleconnections are by using El Niño-Southern 

Oscillation (ENSO) related phenomena that described in 4-4-5 section. 

 

4-4-2- Simple technology 

It was not until the invention of the electric telegraph in 1835 that the modern age of weather 

forecasting began. Before that, the fastest that distant weather reports could travel was  

around 160 kilometres per day (100 mi/d), but was more typically 60–120 kilometres per day 

(40–75 mi/day) (whether by land or by sea). By the late 1840s, the telegraph allowed reports 

of weather conditions from a wide area to be received almost instantaneously, allowing 

forecasts to be made from knowledge of weather conditions further upwind. A storm in 1859 

that caused the loss of the Royal Charter inspired FitzRoy to develop charts to allow 

predictions to be made, which he called "forecasting the weather", thus coining the term 

"weather forecast". Fifteen land stations were established to use the telegraph to transmit to 

him daily reports of weather at set times leading to the first gale warning service. 

Using photography,  barometer and ,… are other simple technologies that maybe useful. 

Measurements of barometric pressure and the pressure tendency (the change of pressure 

over time) have been used in forecasting since the late 19th century. The larger the change 

in pressure, especially if more than 3.5 hPa (2.6 mmHg), the larger the change in weather  

can be expected. If the pressure drop is rapid, a low pressure system is approaching, and 

there is a greater chance of rain. Rapid pressure rises are associated with improving weather 

conditions, such as clearing skies. 

The low temperature forecast for the current day is calculated using the lowest temperature 

found between 7 pm that evening through 7 am the following morning. So, in short, today's 

forecasted low is most likely tomorrow's low temperature. 
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4-4-3- Advanced technology 

The forecasting of the weather within the next six hours is often referred to as nowcasting. In 

this time range it is possible to forecast smaller features such as individual showers and 

thunderstorms with reasonable accuracy, as well as other features too small to be resolved 

by a computer model such as numerical weather prediction (NWP) models running over 

longer forecast periods. 

So, Nowcasting is weather forecasting on a very short term mesoscale period of up to 2 

hours according to the World Meteorological Organization and up to six hours according to 

other authors in the field. This forecast is an extrapolation in time of known weather 

parameters, including those obtained by means of remote sensing, using techniques that 

take into account a possible evolution of the air mass. This type of forecast therefore includes 

details that cannot be solved by NWP techniques running over longer forecast periods. 

A human given the latest radar, satellite and observational data will be able to make a better 

analysis of the small scale features present and so will be able to make a more accurate 

forecast for the following few hours. However, there are now expert systems using those data 

and mesoscale numerical model to make better extrapolation, including evolution of those 

features in time. Accuweather Co. is known for a Minute-Cast, which is a minute-by-

minute precipitation forecast for the next two hours. 

Nowcasting in meteorology uses surface weather station data, wind profiler data, and any 

other weather data available to initialize the current weather. Weather radar echoes and 

satellite data, giving cloud coverage, are particularly important in nowcasting because they 

are very detailed and pick out the size, shape, intensity, speed and direction of movement of 

individual features of weather on a continuous basis and a vastly better resolution than 

surface weather stations.  

This used to be a simple extrapolation by a forecaster for the following few hours. But with 
the development of mesoscale numerical weather models, these information can be ingested 
into an expert system to produce a much better forecast combining numerical weather 
prediction and local effects not normally possible to be known beforehand. Different research 
groups, public and private, have developed such programs. 

For instance, the French weather service, Météo-France, is using a software, 
named ASPIC to extrapolate to a fine scale the areas of precipitation. Other examples 
are AutoNowcaster which has been developed by UCAR to predict short term motion and  
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evolution of thunderstorms, and private firms like ClimaCell using its proprietary HyperCast 
software for nowcasting precipitation type and intensity at 300-500 m geospatial resolution. 

Data extrapolation, including development or dissipation, can be used to find the likely 
location of a moving weather system. The intensity of rainfall from a particular cloud or group 
of clouds can be estimated, giving a very good indication as to whether to expect flooding, 
the swelling of a river etc. Depending on the area of built-up space, drainage and land-use in 
general, a forecast warning may be issued. 

The short term forecast is as old as weather forecasting itself. During the nineteenth century, 
the first modern meteorologists were using extrapolation methods for predicting the 
movement of low pressure systems and anticyclones on surface maps. The researchers 
subsequently applied the laws of fluid dynamics to the atmosphere and developed the NWP 
as we know it today. However, the data resolution and parameterization of 
meteorological primitive equations still leave uncertainty about the small-scale projections, 
in time and space. 

The arrival of remote sensing means, such as radar and satellite, and more rapid 
development of the computer, greatly help to fill that gap. For instance, digital radar systems 
made it possible to track thunderstorms, providing users with the ability to acquire detailed 
information of each storm tracked, since the late 1980s. They are first identified by matching 
precipitation raw data to a set of preprogrammed characteristics into the system, including 
signs of organization in the horizontal and continuity in the vertical. Once the thunderstorm 
cell is identified, speed, distance covered, direction, and Estimated Time of Arrival (ETA) are 
all tracked and recorded to be utilized later. 

In 2017, the arrival of passive sensing means, such as wireless networks, helped progress 
nowcasting even further. It became possible to receive inputs every minute and achieve 
greater accuracy in short-term forecasting. 

Several countries have developed nowcasting programs as previously mentioned. The World 
Meteorological Organization (WMO) supports these efforts and held test campaigns of such 
systems at various occasions. For example, during the Olympic Games in Sydney and 
Beijing, several countries were invited to use their software to support the Games.  

Several scientific conferences addressing the topic. In 2009, WMO has even organized a 
symposium devoted to Nowcasting.  

 

 

 

 

https://en.wikipedia.org/wiki/ClimaCell_(weather_forecaster)
https://en.wikipedia.org/wiki/Anticyclone
https://en.wikipedia.org/wiki/Primitive_equations
https://en.wikipedia.org/wiki/Thunderstorm
https://en.wikipedia.org/wiki/Olympic_Games


       

         Flood Forecasting Uncertainties 

 

 

 

1
6

9
 

4-4-4-Forecast models 

In the past, the human forecaster was responsible for generating the entire weather forecast 

based upon available observations. Today, hydrologists, input is generally confined to 

choosing a model (such as NWP or GCM) based on various parameters, such as model 

biases and performance. Using a consensus of forecast models, as well as ensemble 

members of the various models, can help reduce forecast error.  

However, regardless how small the average error becomes with any individual system, large 

errors within any particular piece of guidance are still possible on any given model 

run. Hydrologists and meteorologists, are required to interpret the model data into weather 

forecasts that are understandable to the end user. They can use knowledge of local effects 

that may be too small in size to be resolved by the model to add information to the forecast. 

While increasing accuracy of forecast models implies that they may no longer be needed in 

the forecast process at some point in the future, there is currently still a need for 

meteorologists intervention.  

4-4-4-1-Ensemble forecasting 

Starting in the 1990s, model ensemble forecasts have been used to help define the forecast 
uncertainty and to extend the window in which numerical weather forecasting is viable farther 
into the future than otherwise possible (Fig. 4-11).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4-11 A schematic illustration of an ensemble forecast 
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Ensemble forecasting is a method used in numerical weather prediction. Instead of making 
a single forecast of the most likely weather, a set (or ensemble) of forecasts is produced. This 
set of forecasts aims to give an indication of the range of possible future states of the 
atmosphere. Ensemble forecasting is a form of Monte Carlo analysis. The multiple 
simulations are conducted to account for the two usual sources of uncertainty in forecast 
models: (1) the errors introduced by the use of imperfect initial conditions, amplified by 
the chaotic nature of the evolution equations of the atmosphere, which is often referred to 
as sensitive dependence on initial conditions; and (2) errors introduced because of 
imperfections in the model formulation, such as the approximate mathematical methods to 
solve the equations. Ideally, the verified future atmospheric state should fall within the 
predicted ensemble spread, and the amount of spread should be related to the uncertainty 
(error) of the forecast. In general, this approach can be used to make probabilistic forecasts 
of any dynamical system, and not just for weather prediction. 

Today ensemble predictions are commonly made at most of the major operational weather 
prediction facilities worldwide, including: 

 National Centers for Environmental Prediction (NCEP of the US) 

 European Centre for Medium-Range Weather Forecasts (ECMWF) 

 United Kingdom Met Office 

 Météo-France 

 Environment Canada 

 Japan Meteorological Agency 

 Bureau of Meteorology (Australia) 

 China Meteorological Administration (CMA) 

 Korea Meteorological Administration 

 CPTEC (Brazil) 

 Ministry of Earth Sciences (IMD, IITM & NCMRWF) (India) 

Experimental ensemble forecasts are made at a number of universities, such as the 
University of Washington, and ensemble forecasts in the US are also generated by the US 
Navy and Air Force. There are various ways of viewing the data such as spaghetti 
plots, ensemble means or Postage Stamps where a number of different results from the 
models run can be compared. 

As proposed by Edward Lorenz in 1963, it is impossible for long-range forecasts—those 
made more than two weeks in advance—to predict the state of the atmosphere with any 
degree of skill owing to the chaotic nature of the fluid dynamics equations 
involved. Furthermore, existing observation networks have limited spatial and temporal 
resolution (for example, over large bodies of water such as the Pacific Ocean), which  
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introduces uncertainty into the true initial state of the atmosphere. While a set of equations, 
known as the Liouville equations, exists to determine the initial uncertainty in the model 
initialization, the equations are too complex to run in real-time, even with the use of 
supercomputers. The practical importance of ensemble forecasts derives from the fact that 
in a chaotic and hence nonlinear system, the rate of growth of forecast error is dependent on 
starting conditions. An ensemble forecast therefore provides a prior estimate of state-
dependent predictability, i.e. an estimate of the types of weather that might occur, given 
inevitable uncertainties in the forecast initial conditions and in the accuracy of the 
computational representation of the equations. These uncertainties limit forecast model 
accuracy to about six days into the future. The first operational ensemble forecasts were 
produced for sub-seasonal timescales in 1985. However, it was realised that the philosophy 
underpinning such forecasts was also relevant on shorter timescales – timescales where 
predictions had previously been made by purely deterministic means. 

Edward Epstein recognized in 1969 that the atmosphere could not be completely described 
with a single forecast run due to inherent uncertainty, and proposed a stochastic dynamic 
model that produced means and variances for the state of the atmosphere. Although 
these Monte Carlo simulations showed skill, in 1974 Cecil Leith revealed that they produced 
adequate forecasts only when the ensemble probability distribution was a representative 
sample of the probability distribution in the atmosphere. It was not until 1992 that ensemble 
forecasts began being prepared by the European Centre for Medium-Range Weather 
Forecasts (ECMWF) and the National Centers for Environmental Prediction (NCEP). 

There are two main sources of uncertainty that must be accounted for when making an 
ensemble weather forecast: initial condition uncertainty and model uncertainty:  

Initial condition uncertainty 

Initial condition uncertainty arises due to errors in the estimate of the starting conditions for 
the forecast, both due to limited observations of the atmosphere, and uncertainties involved 
in using indirect measurements, such as satellite data, to measure the state of atmospheric 
variables. Initial condition uncertainty is represented by perturbing the starting conditions 
between the different ensemble members. This explores the range of starting conditions 
consistent with our knowledge of the current state of the atmosphere, together with its past 
evolution. There are a number of ways to generate these initial condition perturbations. The 
ECMWF model, the Ensemble Prediction System (EPS), uses a combination of singular 
vectors and an ensemble of data assimilations (EDA) to simulate the initial probability 
density. The singular vector perturbations are more active in the extra-tropics, while the EDA 
perturbations are more active in the tropics. The NCEP ensemble, the Global Ensemble 
Forecasting System, uses a technique known as vector breeding.  
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Model uncertainty 

Model uncertainty arises due to the limitations of the forecast model. The process of 
representing the atmosphere in a computer model involves many simplifications such as the 
development of parametrisation schemes, which introduce errors into the forecast. Several 
techniques to represent model uncertainty have been proposed. In here 3 methods: 

1-Perturbed parameter schemes 

When developing a parametrisation scheme, many new parameters are introduced to 
represent simplified physical processes. These parameters may be very uncertain. For 
example, the 'entrainment coefficient' represents the turbulent mixing of dry environmental 
air into a convective cloud, and so represents a complex physical process using a single 
number. In a perturbed parameter approach, uncertain parameters in the model's 
parametrisation schemes are identified and their value changed between ensemble 
members. While in probabilistic climate modelling, such as climateprediction.net, these 
parameters are often held constant globally and throughout the integration, in modern 
numerical weather prediction it is more common to stochastically vary the value of the 
parameters in time and space. The degree of parameter perturbation can be guided using 
expert judgement, or by directly estimating the degree of parameter uncertainty for a given 
model(Fig.4-11).  

2-Stochastic parametrisations 

A traditional parametrisation scheme seeks to represent the average effect of the sub grid-
scale motion (e.g. convective clouds) on the resolved scale state (e.g. the large scale 
temperature and wind fields). A stochastic parametrisation scheme recognises that there may 
be many sub-grid scale states consistent with a particular resolved scale state. Instead of 
predicting the most likely sub-grid scale motion, a stochastic parametrisation scheme 
represents one possible realisation of the sub-grid. It does this through including random 
numbers into the equations of motion[6]. This samples from the probability 
distribution assigned to uncertain processes (Fig. 4-12). Stochastic parametrisations have 
significantly improved the skill of weather forecasting models, and are now used in 
operational forecasting centres worldwide. Stochastic parametrisations were first developed 
at the European Centre for Medium Range Weather Forecasts.  

3-Multi model ensembles 

When many different forecast models are used to try to generate a forecast, the approach is 
termed multi-model ensemble forecasting. This method of forecasting can improve 
forecasts when compared to a single model-based approach. When the models within a 
multi-model ensemble are adjusted for their various biases, this process is known as 
"superensemble forecasting". This type of a forecast significantly reduces errors in model 
output. 

https://en.wikipedia.org/wiki/Parametrization_(atmospheric_modeling)
https://en.wikipedia.org/wiki/Parametrization_(atmospheric_modeling)
https://en.wikipedia.org/wiki/Entrainment_(meteorology)
https://en.wikipedia.org/wiki/Turbulence
https://en.wikipedia.org/wiki/Thunderstorm
https://en.wikipedia.org/wiki/Climateprediction.net
https://en.wikipedia.org/wiki/Parametrization_(atmospheric_modeling)
https://en.wikipedia.org/wiki/Statistical_randomness
https://en.wikipedia.org/wiki/Statistical_randomness
https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/European_Centre_for_Medium-Range_Weather_Forecasts


       

         Flood Forecasting Uncertainties 

 

 

 

1
7

3
 

 When models of different physical processes are combined, such as combinations of 
atmospheric, ocean and wave models, the multi-model ensemble is called hyper-ensemble.  

 

 

 

 

 

 

 

 

 

Fig. 4-12 ECMWF ensemble prediction system 

 

Probability assessment 

The ensemble forecast is usually evaluated by comparing the average of the individual 
forecasts for one forecast variable to the observed value of that variable (the "error"). This is 
combined with consideration of the degree of agreement between various forecasts within 
the ensemble system, as represented by their overall standard deviation or "spread". 
Ensemble spread can be visualised through tools such as spaghetti diagrams, which show 
the dispersion of one quantity on prognostic charts for specific time steps in the future. 
Another tool where ensemble spread is used is a meteogram, which shows the dispersion in 
the forecast of one quantity for one specific location. Three methods: 

1-Reliability and resolution (calibration and sharpness)  

The spread of the ensemble forecast indicates how confident the forecaster can be in his or 

her prediction. When ensemble spread is small and the forecast solutions are consistent 

within multiple model runs, forecasters perceive more confidence in the forecast in 

general. When the spread is large, this indicates more uncertainty in the prediction. Ideally, 

a spread-skill relationship should exist, whereby the spread of the ensemble is a good 

predictor of the expected error in the ensemble mean. If the forecast is reliable, the observed 

state will behave as if it is drawn from the forecast probability distribution. Reliability 

(or calibration) can be evaluated by comparing the standard deviation of the error in the  
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ensemble mean with the forecast spread: for a reliable forecast, the two should match, both 

at different forecast lead times and for different locations.  

The reliability of forecasts of a specific weather event can also be assessed. For example, if 
30 of 50 members indicated greater than 1 cm rainfall during the next 24 h, the probability of 
exceeding 1 cm could be estimated to be 60%. The forecast would be considered reliable if, 
considering all the situations in the past when a 60% probability was forecast, on 60% of 
those occasions did the rainfall actually exceed 1 cm. In practice, the probabilities generated 
from operational weather ensemble forecasts are not highly reliable, though with a set of past 
forecasts (reforecasts or hindcasts) and observations, the probability estimates from the 
ensemble can be adjusted to ensure greater reliability. 

Another desirable property of ensemble forecasts is resolution. This is an indication of how 
much the forecast deviates from the climatological event frequency – provided that the 
ensemble is reliable. This forecast quality can also be considered in terms of sharpness, or 
how small the spread of the forecast is. The key aim of a forecaster should be to maximise 
sharpness, while maintaining reliability. Forecasts at long leads will inevitably not be 
particularly sharp (have particularly high resolution), for the inevitable (albeit usually small) 
errors in the initial condition will grow with increasing forecast lead until the expected 
difference between two model states is as large as the difference between two random states 
from the forecast model's climatology. 

2-Calibration of ensemble forecasts 

If ensemble forecasts are to be used for predicting probabilities of observed weather variables 
they typically need calibration in order to create unbiased and reliable forecasts. For forecasts 
of temperature one simple and effective method of calibration is linear regression, often 
known in this context as Model output statistics. The linear regression model takes the 
ensemble mean as a predictor for the real temperature, ignores the distribution of ensemble 
members around the mean, and predicts probabilities using the distribution of residuals from 
the regression. In this calibration setup the value of the ensemble in improving the forecast 
is then that the ensemble mean typically gives a better forecast than any single ensemble 
member would, and not because of any information contained in the width or shape of the 
distribution of the members in the ensemble around the mean. However, in 2004, a 
generalisation of linear regression (now known as Nonhomogeneous Gaussian regression) 
was introduced that uses a linear transformation of the ensemble spread to give the width of 
the predictive distribution, and it was shown that this can lead to forecasts with higher skill 
than those based on linear regression alone. This proved for the first time that information in 
the shape of the distribution of the members of an ensemble around the mean, in this case 
summarized by the ensemble spread, can be used to improve forecasts relative to linear 
regression. Whether or not linear regression can be beaten by using the ensemble spread in 
this way varies, depending on the forecast system, forecast variable and lead time. 
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3-Predicting the size of forecast changes 

In addition to being used to improve predictions of uncertainty, the ensemble spread can 
also be used as a predictor for the likely size of changes in the mean forecast from one 
forecast to the next. This works because, in some ensemble forecast systems, narrow 
ensembles tend to precede small changes in the mean, while wide ensembles tend to 
precede larger changes in the mean. This has applications in the trading industries, for whom 
understanding the likely sizes of future forecast changes can be important. 

 

Co-ordinated research 
Main article: THORPEX Interactive Grand Global Ensemble 

The Observing System Research and Predictability Experiment (THORPEX) is a 10-year international 
research and development programme to accelerate improvements in the accuracy of one-day to two-
week high impact weather forecasts for the benefit of society, the economy and the environment. It 
establishes an organizational framework that addresses weather research and forecast problems whose 
solutions will be accelerated through international collaboration among academic institutions, operational 
forecast centres and users of forecast products. 

One of its key components is THORPEX Interactive Grand Global Ensemble (TIGGE), a World Weather 
Research Programme to accelerate the improvements in the accuracy of 1-day to 2 week high-impact 
weather forecasts for the benefit of humanity. Centralized archives of ensemble model forecast data, from 
many international centers, are used to enable extensive data sharing and research. 

 

4-4-5- Teleconnections  

El Niño (/ɛl ˈniːn.joʊ/; is the warm phase of the El Niño–Southern Oscillation (ENSO) and is 
associated with a band of warm ocean water that develops in the central and east-central 
equatorial Pacific (between approximately the International Date Line and 120°W), including 
the area of the Pacific coast of South America. The ENSO is the cycle of warm and cold sea 
surface temperature (SST) of the tropical central and eastern Pacific Ocean. El Niño is 
accompanied by high air pressure in the western Pacific and low air pressure in the eastern 
Pacific. El Niño phases are known to occur close to four years, however, records demonstrate 
that the cycles have lasted between two and seven years. During the development of El Niño, 
rainfall develops between September–November. The cool phase of ENSO is La Niña, with 
SSTs in the eastern Pacific below average, and air pressure high in the eastern Pacific and 
low in the western Pacific. The ENSO cycle, including both El Niño and La Niña, causes 
global changes in temperature and rainfall (Fig. 4-13 and 4-14).  
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Since tropical sea surface temperatures are predictable up to two years ahead of 
time, knowledge of teleconnection patterns gives some amount of predictability in remote 
locations with an outlook sometimes as long as a few seasons. Predicting El Niño, for 
instance, enables prediction of North American rainfall, snowfall, droughts or temperature 
patterns with a few weeks to months lead time. In Sir Gilbert Walker's time, A strong El Niño 
usually meant a weaker Indian monsoon, but this anticorrelation has weakened in the 1980s 
and 1990s, for controversial reasons.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig: 4-13 Normal Pacific pattern: Warm pool in the west drives deep atmospheric convection. Local winds 

cause nutrient-rich cold water to upwell along the South American coast. (NOAA / PMEL / TAO). 

ENSO normal state. Normal equatorial winds warm as they flow westward across the Pacific. 
Cold water is pulled up along west coast of South America. Warming water is pushed toward 
west side of Pacific. Sea surface is warm in the west. Hot air rises in western Pacific, travels 

eastward and cool air descends on South America. 
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Fig 4-14 El Niño conditions: warm water and atmospheric convection move eastwards. In strong El Niños 

deeper thermocline off S. America means upwelled water is warm and nutrient poor. 

ENSO/El Niño state. Sea surface is warm in central and eastern Pacific. Less cold water is 
pulled up along west coast of South America. Hot air rises in central Pacific, travels east and 

west before cooling and descending. 

 

4-4-6-hydbrid forecasting 

short-term rainfall Probabilistic forecasts blending with radar nowcasts and MM5 

Short‐term Quantitative Precipitation Forecasts (QPFs) can be achieved from numerical 

weather prediction (NWP) models or radar nowcasting, that is the extrapolation of the 

precipitation at a future time from consecutive radar scans. Hybrid forecasts obtained by 

merging rainfall forecasts from radar nowcasting and NWP models are potentially more skilful 

than either radar nowcasts or NWP rainfall forecasts alone.  
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The paper provides an assessment of deterministic and probabilistic high‐resolution QPFs 

achieved by implementing the Short‐term Ensemble Prediction System developed by the UK 

Met Office. Both radar nowcasts and hybrid forecasts have been performed. The results show 

that the performance of both deterministic nowcasts and deterministic hybrid forecasts 

decreases with increasing rainfall intensity and spatial resolution. The results also show that 

the blending with the NWP forecasts improves the performance of the forecasting system. 

Probabilistic hybrid forecasts have been obtained through the modelling of a stochastic noise 

component to produce a number of equally likely ensemble members, and the comparative 

assessment of deterministic and probabilistic hybrid forecasts shows that the probabilistic 

forecasting system is characterised by a higher discrimination accuracy than the deterministic 

one. Copyright © 2011 John Wiley & Sons, Ltd [7]. 

 

4-5-Weather alerts and advisories 

The world's first televised weather forecasts, including the use of weather maps, were 
experimentally broadcast by the BBC in 1936. This was brought into practice in 1949 after World 
War II. In the late 1970s and early 80s, John Coleman, the first weatherman on ABC-TV's Good 
Morning America, pioneered the use of on-screen weather satellite information and computer 
graphics for television forecasts. Some weather channels have started broadcasting on live 
broadcasting programs such as YouTube and Periscope to reach more viewers. A major part of 
modern weather forecasting is the severe weather alerts and advisories that the national weather 
services issue in the case that severe or hazardous weather is expected. This is done to protect 
life and property. Some of the most commonly known of severe weather advisories are 
the severe thunderstorm and tornado warning, as well as the severe thunderstorm and tornado 
watch. Other forms of these advisories include winter weather, high wind, flood, tropical cyclone, 
and fog. Severe weather advisories and alerts are broadcast through the media, including radio, 
using emergency systems as the Emergency Alert System, which break into regular 
programming. There are a number of sectors with their own specific needs for weather forecasts 
and specialist services are provided to these users: 

 Air traffic 

 Marine 

 Agriculture 

 Forestry 

 Utility companies 

 Other commercial companies 

 Military applications 
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Chapter 5             Uncertainty Analysis in FFS 

 “Flood Forecasting Systems (FFS), include 

atmospheric, surface water and subsurface water 

(unsaturated and groundwater sub system) 

systems. So in this chapter after describing 

methods of uncertainty analysis, developed the 

concepts to apply these methods in these systems 

based on meteorologic (as a physical process) 

and hydrologic (as a lumped and hydraulical 
process) forecasting models that is the same FFS. 

Computer modeling  for the next 

generation of hydrological modelers is 

inevitable (Mchine Learning). Daliri.F 

2020 

 

5-1 Uncertainty analysis methods 

In this section, discuss available methods and tools to quantifying uncertainties in 

performance assessment (PA) models. Main sources of uncertainty are [1], [3]: 

 Physical variability 

 Data uncertainties 

 Model error 

The uncertainty quantification methods are described here are four types include: 

(1) quantification of uncertainty in the inputs to the PA models,  
(2) propagation of input uncertainty through the PA models, 
(3) model error quantified through verification and validation activities, and  
(4) probabilistic PA. 
Random variable and random process descriptions of physical variability are outlined. Methods for 
handling data uncertainty through flexible families of probability distributions, confi-dence bounds, 
interval analysis and Bayesian analysis are described. Useful surrogate modeling and sensitivity 
analysis techniques for efficient uncertainty propagation analysis are discussed, as well as methods 
to quantify the various sources of model error. Statistical hypothesis testing techniques (both classical 
and Bayesian) are discussed for the validation of PA models, and a Bayesian approach to quantify 
the confidence in model prediction with respect to field conditions is developed. First-order 
approximations as well as efficient Monte Carlo sampling techniques for probabilistic PA are 
described [1] , [3]. 
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Uncertainty quantification is important in assessing and predicting performance of complex 
engineering systems, especially in the absence of adequate experimental or real-world data. 
Simulation of complex physical systems involves multiple levels of modeling ranging from the 
material to component to subsystem to system. Interacting models and simulation codes from 
multiple disciplines (multiple physics) may be required, with iterative analyses between some 
of the codes. As the models are integrated across multiple disciplines and levels, the problem 
becomes more complex and assessing the predictive capability of the overall system model 
becomes more difficult. Many factors contribute to the uncertainty in the prediction of the 
system model including: variability in model input variables, modeling errors, assumptions 
and approximations, measurement errors, and sparse and imprecise data. 
Figure 5-1 shows the four stages, within a conceptual framework for systematic 
quantification, propagation and management of various types of uncertainty. The methods 
discussed in this book address all the four steps shown in Figure 5-1. While uncertainty has 
been dealt with using probabilistic as well as non probabilistic (e.g., fuzzy sets, possibility 
theory, evidence theory) formats in the literature, this report will focus only on probabilistic 
analysis, mainly because the mathematics of probabilistic computation are very well 
established, whereas the non-probabilistic methods are still under development and generally 
result in interval computations that are expensive when applied to large problems with many 
variables. 
The different stages of analysis in Figure 5-1 are not strictly sequential. For example, stage 
3 (verification and validation –V&V) appears after system analysis and uncertainty 
propagation. However, it is almost impossible to perform V&V on the system scale, because 
of extrapolation in time and space; therefore V&V is usually done for the sub-models. Also, 
several of the inputs to the overall system model may be calibrated based on the results of 
sub-model analysis, sensitivity analysis, and V&V activities. Thus the four stages in Figure 5-
1 simply group together the different types of analysis, and might occur in different sequences 
for different problems and different sub-models. 
The quantification of uncertainty in current PAs is limited to quantifying the probability 
distributions of key parameters. A more comprehensive implementation of uncertainty 
quantifycation for environmental PAs has been hampered by the numerous sources of 
uncertainty and the long time durations considered in the PAs. The methods presented here 
provide a basis for advancing the current state of the art in uncertainty quantification of 
environmental PAs. 
The remainder of this section is organized as follows: Section 5-1-1 discusses methods to 
quantify the uncertainty in the inputs to the system analysis model, addressing both physical 
variability and data uncertainty. Model error is addressed in Sections 5-1-2 and 5-1-3 and in 
section 5-1-4 discuss probabilistic PA. 
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Figure 5-1. Uncertainty Quantification, Propagation and Management Framework [1] 

 
1 The box Data in the input uncertainty quantification stage includes laboratory data, historical field data, literature sources, and expert opinion. 

2 The box Design Changes may refer to conceptual, preliminary, or detailed design, depending on the development stage. 

3 The boxes Design Changes and Risk Management are outside the scope of this book, although they are part of the overall uncertainty framework. 

 

 

5-1-1- Input uncertainty quantification 

Physical variability of parameters can be quantified through random variables by statistical 

analysis. Parameters that vary in time or space are modeled as random processes or random 

fields with appropriate correlation structure. Data uncertainty that leads to uncertainty in the 

distribution parameters and distribution types can be addressed using confidence intervals 

and Bayesian statistics. Methods to include several sources of data uncertainty, namely, 

sparse data, interval data and measurement error, are discussed. 

5-1-1-1- Physical variability 

This type of uncertainty, also referred to as aleatory or irreducible uncertainty, arises from 

natural or inherent random variability of physical processes and variables, due to many 

factors such as environmental and operational variations, construction processes, and quality  
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control. This type of uncertainty is present both in system properties (e.g., material strength, 

porosity, diffusivity, geometry variations, reaction rates) and external influences and 
demands on the system (e.g., concentration of chemicals, temperature, humidity, mechanical 

loads). As a result, in model-based prediction of system behavior, there is uncertainty 

regarding the precise values for model parameters and model inputs, leading to uncertainty 

about the precise values of the model output. Such quantities are represented in engineering 
analysis as random variables, with statistical parameters such as mean values, standard 

deviations, and distribution types estimated from observed data or in some cases assumed. 

Variations over space or time are modeled as random processes. 

Examples of Cementitious Barrier Model input variables with physical variability (i.e., 

inherent, natural variability) include: 

• Material properties (mechanical, thermal, porosity, permeability, diffusivity, roughness coefficient,..) 

• Geometrical properties (structural dimensions, concrete cover depth,..) 
• External conditions (mechanical loading, boundary conditions, physical processes such as 
freeze-thaw, chemical processes such as carbonation, chloride or sulfate attack). 
 
Many uncertainty quantification studies have only focused on quantifying and propagating 
the inherent variability in the input parameters. Well-established statistical (both classical and 
Bayesian) methods are available for this purpose. 
 

5-1-1-1-1 Modeling variability in system properties 

In probabilistic analysis, the sample–to–sample variations (random variables) in the 
parameters are addressed by defining them as random variables with probability density 
functions (PDFs). This assumes that the system/material is homogeneous on a macroscale. 
For example, chloride ion diffusivity has been modeled using a lognormal distribution (Hong, 
2000; Gulikers, 2006; Rafiq et al., 2004; Chen, 2006) and water–cement ratio has been 
modeled using a normal distribution (Chen, 2006) and uniform and triangular distributions 
(Kong et al., 2002). 
Some parameters may vary not only from sample to sample (as is the case for random 
variables), but also in spatial or time domain. Parameter variation over time and space can 
be modeled as random processes or random fields. For example, concrete cover depth and 
compressive strength have been modeled as random fields using squared exponential 
correlation functions (Stewart and Mullard, 2007). 
Some well known methods for simulating random processes are spectral representation (SR)  
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(Gurley, 1997), Karhunen-Loeve expansion (KLE) (Ghanem and Spanos, 2003, Huang et al., 
2007; Mathelin et al., 2005), and polynomial chaos expansion (PCE) (Huang et al., 2007; 
Mathelin et al., 2005; Red-Horse and Benjamin, 2004). The PCE method has been used to 
represent the stochastic model output as a function of stochastic inputs. Consider an example 
of representing a random process using KLE, expressed as 
 
 
                     5-1  
     
where: 
ϖ(x) is the mean of the random process ϖ(x, χ),λi and fi(x) are eigenvalues and 
eigenfunctions of C(x1,x2), and ξi(χ) is a set of uncorrelated standard normal random 
variables (x is a space or time coordinate, and χ is an index representing different realizations 
of the random process). 
Using Equation (5-1), realizations of the random process ϖ(x, χ) can be easily simulated by 
generating samples of the random variables ξ(χ), and these realizations of ϖ(x,χ) can be 
used as inputs to PA. 
 
5-1-1-1-2 Modeling variability in external conditions 
Some boundary conditions (e.g., temperature and moisture content) might exhibit a recurring 
pattern over shorter periods and also a trend over longer periods. An example of variability 
in an external condition, i.e., rainfall, is illustrated in Figure 5-2. It is evident from the figure 
that the rainfall data has a pattern over a period of 1 year and a downward trend over a 
number of years. These can be numerically represented by a seasonal model using an 
autoregressive integrated moving average (ARIMA) method generally used for linear (The 

current observation can be expressed as a linear function of past observations ) nonstationary (A process is said to be non-

stationary if its probability structure varies with the time or space coordinate ) processes (Box et al., 1994). This 
method can be used to predict the temperature or the rainfall magnitudes in the future so that 
it can be used in the durability analysis of the structures under future environmental 
conditions. 

 

 
5-1-1-1-3 Stationary external processes 
For a stationary process (A process is said to be stationary if its probability structure does not vary with the time or space 

coordinate), the ARIMA method expresses the observation at the t_th time step in terms of the 
observations at previous time steps as: 
 
                  5-2 
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Figure 5-2 Precipitation Data for Aiken, SC (National Oceanic and Atmospheric Administration)[1] 
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Assuming that the error at t_th time step is also dependent on the errors at previous time 
steps, ε_t can also be expressed as: 
 

 

                             5-3 

c1 is a constant and θi are coefficients. 
 
 
Using a backward operator B such that                    and combining Eqs. (5-2) and (5-3), 
results in Equation 5-4. 
 

                    
                            5-4 
 

 

 

 

 

 

 

5-1-1-1-4 Non-Stationary external processes 

A random non-stationary process fluctuates about a mean value that exhibits a specific 

pattern. If the differences in levels of fluctuation are considered, the process can be simulated 

using the same method as for stationary processes. For example, differentiating a second 

order polynomial twice will result in a constant. Thus, a non-stationary process of dth degree 

can be expressed as: 

                           5-5 
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∇ is called the backward difference operator of the d_th degree. If the process exhibits 

patterns over a shorter period (s) and a trend over a longer period, the process can be 

expressed as: 

                            5-6 

where: 

Φp(Bs) and ΦQ(Bs) are polynomials of order P and Q, Bszt= zt-s, and D is the order of 

differentiation. 

A similar model may be used to relate the current error (error between observation and model 

prediction at t_th time step) to the previous errors (errors between observations and model 

predictions at previous time steps) as: 

                          5-7 

 

where: φp(B) and θq(B) and are polynomials of order p and q, d is the order of differentiation 

and t a is a white noise process. The fi nal model is obtained by combining Eqs. (5-6- and (5-

7) as: 

                                     5-8 

 

Eq. (5-9) is referred to as a general multiplicative model of order (p*d*q) * (P*D*Q)s. This 

method can be used to simulate a seasonal process. 

It may also be important to quantify the statistical correlations between some of the input 

random variables. Many previous studies on uncertainty quantification simply assume either 

zero or full correlation, in the absence of adequate data. A Bayesian approach maybe 

pursued for this purpose, as described in next subsection. 

5-1-1-2- Data uncertainty 

This type of uncertainty falls under the category of epistemic uncertainty (i.e.,knowledge or 

information uncertainty) or reducible uncertainty (i.e., the uncertainty is reduced as more 

information is obtained). Data uncertainty occurs in different forms. In the case of a quantity  
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treated as a random variable, the accuracy of the statistical distribution parameters depends 

on the amount of data available. If the data is sparse, the distribution parameters themselves 

are uncertain and may need  to be treated as random variables. On the other hand, 

information may be imprecise or qualitative, and it is not easy to treat this type of uncertainty 

through random variables. In some cases, data regarding some variables may only be 

available as a range of values, based on expert opinion. Non-probabilistic representations 

such as fuzzy sets and evidence theory are available for describing such uncertainties. 

Measurement error (either in the laboratory or in the field) is another important source of 

data uncertainty. 

A Bayesian updating approach is described below to quantify uncertainty due to inadequate 
statistical data and measurement errors (εexp). This is consistent with the framework 
proposed in Figure 5-1, and is used to update the statistics of different physical variables and 
their distribution parameters. The prior distributions are based on available data and expert 
judgment, and these are updated as more data becomes available through experiments, 
analysis, or real-world experience. 

 

5-1-1-2-1 Sparse statistical data 
For any random variable that is quantitatively described by a probability density function, 
there is always uncertainty in the corresponding distribution parameters due to small sample 
size. As testing and data collection activities are performed, the state of knowledge regarding 
the uncertainty changes, and a Bayesian updating approach can be implemented. For 
example, suppose we decide that an input variable X follows a Gaussian distribution N(μ,σ2) 
with μ and σ estimated from the data. 
There is uncertainty in the normal distribution assumption, as well as in the estimates of the 
distribution parameters μ and σ, depending on the sample size. In the Bayesian approach, μ 
(mean) and σ (standard deviation) are also treated as random variables, and their statistics 
are updated based on new data. However, we do not know the distribution of μ and σ a priori, 
so we may assume Gaussian for μ and Gamma distribution for ɸ = σ -2 as an initial guess for 
example, and then do a Bayesian update after more data is collected. 
The Bayesian approach also applies to joint distributions of multiple random variables, 
which also helps to include the uncertainty in correlations between the variables. A prior joint 
distribution is assumed (or individual distributions and correlations are assumed), and then 
updated as data becomes available. 
Instead of assuming a well known prior distribution form (e.g., uniform, normal) for sparse 
data sets, either empirical distribution functions, or flexible families of distributions 
based on the data can be constructed.  
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A bootstrapping technique (Bootstrapping is a data-based simulation method for statistical inference by re-sampling 

from an existing data set (Efron et al., 1994)) can then be used to quantify the uncertainty in the distribution 
parameters. The empirical distribution function is constructed by ranking the observations 
from lowest to highest value, and assigning a probability value to each observation. 
Examples of flexible distribution families include the: Johnson family, Pearson family, gamma 
distribution, and stretched exponential distribution. The use of the Johnson family distribution 
has been explored by Marhadi et al., 2008, and extended to quantify the uncertainty in 
distribution parameters by McDonald et al., 2009. In constructing the Johnson family 
distribution, the available data is used to calculate the first four moments, and then the 
distribution form is chosen based on the values of the four moments. A jack-knife procedure 
is used to estimate the uncertainty in the distribution parameters, based on repeated 
estimation by leaving out one or more data points in each estimation. 
 

5-1-1-2-2 Measurement error 
The measured quantity yexp usually deviates from the unknown true value ytrue due to the 
uncertainties in the test setup, equipment, environment, and operator. For example, large 
errors in the measurement of expansion due to sulfate attack can be seen in the experiments 
performed by Ferraris et al., 1997.  
The measurement error εexp can be expressed as yexp = ytrue+ εexp . The measurement error 
in each input variable in many studies (e.g., Barford, 1985) is assumed to be independent 
and identically distributed (IID) with zero mean and an assumed variance,( εexp ~ N(0,σ2

exp). 
Due to the measurement uncertainty, the distribution parameter σexp cannot be obtained as 
a deterministic value. Instead, it is a random variable with a prior density Ƭ(σexp). Thus, when 
new data is available after testing, the distribution of σexp can be easily updated using the 
Bayes theorem. 
Another way to represent measurement error εexp is through an interval only, and not as a 
random variable. In that case, one can only say the true value ytrue lies in the interval [yexp – 
εexp, yexp + εexp ] without any probability distribution assigned to εexp. Methods to include data 
in interval format are discussed next. 
 
5-1-1-2-3 Data available in interval format 
Some quantities in the system model may not have probabilistic representation, since data 
may be sparse or may be based on expert opinion. Some experts might only provide 
information about a range of possible values for some model input variable. Representations 
such as fuzzy sets, possibility theory, and evidence theory have been used. This section 
is focused on probabilistic methods to include interval data. 
Transformations have been proposed from a nonprobabilistic to probabilistic format, through 
the maximum likelihood approach (Langley, 2000; Ross et al., 2002). 
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Such transformations have attracted the criticism that information is either added or lost in 
the process. 
Two ways to address the criticism are:  
(1) construct empirical distribution functions based on interval data collected from multiple 
experts or experiments(Ferson et al., 2007); or  
(2) construct flexible families of distributions with bounds on distribution parameters based 
on the interval data, without forcing a distribution assumption (McDonald et al., 2008). 
These can then be treated as random variables with probability distribution functions and 
combined with other random variables in a Bayesian framework to quantify the overall system 
model uncertainty. The use of families of distributions will result in multiple probability 
distributions for the output, representing the contributions of both physical variability and 
data uncertainty. 
 

5-1-2- Uuncertainty propagation analysis 
Both classical and Bayesian probabilistic approaches can be investigated to propagate 
uncertainty between individual sub-models and through the overall system model. To reduce 
the computational expense, surrogate models can be constructed using several different 
techniques. Methods for sensitivity analysis in the presence of uncertainty are discussed. 
In this section, methods to quantify the contributions of different sources of uncertainty and 
error as they propagate through the system analysis model, including the contribution of model 
error, are discussed, in order to quantify the overall uncertainty in the system model output. 
This section will cover two issues: 
(1) quantification of model output uncertainty, given input uncertainty (both physical variability 
and data uncertainty), and 
(2) quantification of model error (due to both model form selection and solution 
approximations). 
Several uncertainty analysis studies, including a study with respect to the Yucca Mountain 
high-level waste repository, have recognized the distinction between physical variability and 
data uncertainty (Helton and Sallaberry, 2009) [1]. As a result, these methods evaluate the 
variability in an inner loop calculation and data uncertainty in an outer loop calculation. 
Another example is provided by Holdren et al., 2006 in a baseline risk assessment study with 
respect to the Idaho Cleanup Project, where contributions of different sources of uncertainty 
are separately analyzed, such as from inventory, infiltration, sorption characteristics, model 
calibration, and simulation periods. 
 
5-1-2-1- Propagation of Physical Variability 
Various probabilistic methods (e.g., Monte Carlo simulation and first-order or second-order 
analytical approximations[3]) have been studied for the propagation of physical variability in  
model inputs and model parameters, expressed through random variables and random process 
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or fields. Stochastic finite element methods (e.g., Ghanem and Spanos, 2003;  Haldar and 
Mahadevan, 2000) have been developed for single discipline problems in structural, thermal, 
and fluid mechanics. An example of such propagation is shown in Figure 5-3.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5-3 Example of Physical Variability Propagation [1] 

 

Several types of combinations of system analysis model and statistical analysis 
techniques are available: 
• Monte Carlo simulation with the deterministic system analysis as a black-box (e.g., Robert 
and Cesalla, 2004) to estimate model output statistics or probability of regulatory compliance; 
• Monte Carlo simulation with a surrogate model to replace the deterministic system analysis 
model (e.g., Ghanem and Spanos, 2003; Isukapalli et al.,1998; Xiu and Karniadakis, 2003; 
Huang et al., 2007), to estimate model output statistics or probability of regulatory 
compliance; 
• Local sensitivity analysis using finite difference, perturbation or adjoint analyses, leading to 
estimates of the first-order or second-order moments of the output (e.g., Blischke and Murthy, 
2000); and 
• Global sensitivity and effects analysis, and analysis of variance in the output (Box et al., 1978). 
These techniques are generic, and can be applied to multi-physics analysis with multiple 
component modules as in the PA of cementitious barriers. However, most applications of 
these techniques have only considered physical variability. The techniques need to include 
the contribution of data uncertainty and model error to the overall model prediction 
uncertainty. 
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Computational effort is a significant issue in practical applications, since these techniques 
involve a number of repeated runs of the system analysis model. The system analysis may 
be replaced with an inexpensive surrogate model in order to achieve computational 
efficiency; this is discussed in Section 5-1-2-3. Efficient Monte Carlo techniques have also 
been pursued to reduce the number of system model runs, including Latin hypercube 
sampling (LHS) (Mckay et al., 1979; Farrar et al., 2003) and importance sampling 
(Mahadevan and Raghothamachar, 2000; Zou et al. 2003). 
 
5-1-2-2- Propagation of Data Uncertainty 
Three types of data uncertainty were discussed in prior Section. Sparse point data results in 
uncertainty about the parameters of the probability distributions describing quantities with 
physical variability. In that case, uncertainty propagation analysis takes a nested 
implementation. In the outer loop, samples of the distribution parameters are randomly 
generated, and for each set of sampled distribution parameter values, probabilistic 
propagation analysis is carried out as in Section 5-1-2-1. This results in the computation of 
multiple probability distributions of the output, or confidence intervals for the estimates of 
probability of non-compliance in PA. 
In the case of measurement error, choice of the uncertainty propagation technique depends 
on how the measurement error is represented. If the measurement error is represented as a 
random variable, it is simply added to the measured quantity, which is also a random variable 
due to physical variability. Thus a sum of two random variables may be used to include both 
physical variability and measurement error in a quantity of interest. If the measurement error 
is represented as an interval, one way to implement probabilistic analysis is to represent the 
interval through families of distributions or upper and lower bounds on probability 
distributions, as discussed in Section 5-1-1-2-3. In that case, multiple probabilistic analyses, 
using the same nested approach as in the case of sparse data, can be employed to generate 
multiple output distributions or confidence intervals for the model output. The same approach 
is possible for interval variables that are only available as a range of values, as in the case 
of expert opinion. 
Propagation of uncertainty is conceptually very simple, but computationally quite expensive 
to implement, especially when both physical variability and data uncertainty are to be 
considered. The presence of both types of uncertainty requires a nested implementation of 
uncertainty propagation analysis (simulation of data uncertainty in the outer loop and 
simulation of physical variability in the inner loop). If the system model runs are time-
consuming, then uncertainty propagation analysis could be prohibitively expensive. One way 
to overcome the computational hurdle is to use an inexpensive surrogate model to replace 
the detailed system model, as discussed next. 
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5-1-2-3- Surrogate Models 
Surrogate models (also known as response surface models) are frequently used to replace 
the expensive system model, and used for multiple simulations to quantify the uncertainty 
in the output. Many types of surrogate modeling methods are available, such as linear and 
nonlinear regression, polynomial chaos expansion, Gaussian process modeling (e.g., Kriging 
model), splines, moving least squares, support vector regression, relevance vector 
regression, neural nets, or even simple look-up tables. For example, Goktepe et al., 2006 
used neural network and polynomial regression models to simulate expansion of concrete 
specimens under sulfate attack. All surrogate models require training or fitting data, collected 
by running the full-scale system model repeatedly for different sets of input variable values. 
Selecting the sets of input values is referred to as statistical design of experiments, and there 
is extensive literature on this subject. Two types of surrogate modeling methods are 
discussed below that might achieve computational efficiency while maintaining high accuracy 
in output-uncertainty quantification. The first method expresses the model output in terms of 
a series expansion of special polynomials such as Hermite polynomials, and is referred to as 
a stochastic response surface method (SRSM). The second method expresses the model 
output througha Gaussian process, and is referred to as Gaussian process modeling (Kriging 
method). 
 
5-1-2-3-1 Stochastic Response Surface Method 
The common approach for building a surrogate or response surface model is to use least 
squares fitting based on polynomials or other mathematical forms based on physical 
considerations. In SRSM, the response surface is constructed by approximating both the 
input and output random variables and fields through series expansions of standard random 
variables (e.g. Isukapalli et al., 1998; Xiu and Karniadakis, 2003; Huang et al., 2007). This 
approach has been shown to be efficient, stable, and convergent in several structural, 
thermal, and fluid flow problems. A general procedure for SRSM is as follows: 
• Representation of random inputs (either random variables or random processes) in terms 
of Standard Random Variables (SRVs) by K-L expansion, as in Equation (5-1). 
• Expression of model outputs in chaos series expansion. Once the inputs are expressed as 
functions of the selected SRVs, the output quantities can also be represented as functions of 
the same set of SRVs. If the SRVs are Gaussian, the output can be expressed a Hermite 
polynomial chaos series expansion in terms of Gaussian variables. If the SRVs are non-
Gaussian, the output can be expressed by a general Askey chaos expansion in terms of non-
Gaussian variables (Ghanem and Spanos, 2003). 
• Estimation of the unknown coefficients in the series expansion. The improved probabilistic 
collocation method (Isukapalli et al., 1998) is used to minimize the residual in the random 
dimension by requiring the residual at the collocation points equal to zero. The model outputs 
are computed at a set of collocation points and used to estimate the coefficients.  
 
 
 



       

         Flood Forecasting Uncertainties 

 

 

 

1
9

4
 

These collocation points are the roots of the Hermite polynomial of a higher order. This way 
of selecting collocation points would capture points from regions of high probability (Tatang 
et al., 1997). 
• Calculation of the statistics of the output that has been cast as a response surface in terms 
of a chaos expansion. The statistics of the response can be estimated with the response 
surface using either Monte Carlo simulation or analytical approximation. 
 
5-1-2-3-2 Kriging or Gaussian Process Models 
Gaussian process (GP) models have several features that make them attractive for use as 
surrogate models. The primary feature of interest is the ability of the model to “account for its 
own uncertainty.” That is, each prediction obtained from a Gaussian process model also has 
an associated variance, or uncertainty. This prediction variance primarily depends on the 
closeness of the prediction location to the training data, but it is also related to the functional 
form of the response. For example, see Fig. 5-4, which depicts a one-dimensional Gaussian 
process model. Note how the uncertainty bounds are related to both the closeness to the 
training points, as well as the shape of the curve. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5-4. Gaussian Process Model With Uncertainty Bounds[1] 

 

The basic idea of the GP model is that the output quantities are modeled as a group of 
multivariate normal random variables. A parametric covariance function is then constructed 
as a function of the inputs. The covariance function is based on the idea that when the inputs 
are close together, the correlation between the outputs will be high. As a result, the 
uncertainty associated with the model prediction is small for input values that are close to the  
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training points, and large for input values that are not close to the training points. In addition, 
the GP model may incorporate a systematic trend function, such as a linear or quadratic 
regression of the inputs (in the notation of Gaussian process models, this is called the mean 
function, while in Kriging it is often called a trend function). The effect of the mean function 
on predictions that interpolate the training data is small, but when the model is used for 
extrapolation, the predictions will follow the mean function very closely. 
Within the GP modeling technique, it is also possible to adaptively select the design of 
experiments to achieve very high accuracy. The method begins with an initial GP model built 
from a very small number of samples, and then one intelligently chooses where to generate 
subsequent samples to ensure the model is accurate in the vicinity of the region of interest. 
Since the GP model provides the expected value and variance of the output quantity, the next 
sample may be chosen in the region of highest variance, if the objective is to minimize the 
prediction variance. The method has been shown to be both accurate and computationally 
efficient for arbitrarily shaped functions (Bichon et al., 2007). 
 
5-1-2-4- Sensitivity Analysis Methods 
Sensitivity analysis serves several important functions: 
(1) identification of dominant variables or sub-models, thus helping to focus data collection 
resources efficiently;  
(2) identification of insignificant variables or sub-models of limited significance, helping to 
reduce the size of the problem and computational effort; and  
(3) quantification of the contribution of solution approximation error.  
Both local and global sensitivity analysis techniques are available to investigate the 
quantitative effect of different sources of variation (physical parameters, models, and 
measured data) on the variation of the model output. The primary benefit of sensitivity 
analysis to uncertainty analysis is to enable the identification of which physical parameters 
have the greatest influence on the output (Campolongo et al., 2000; Saltelli et al., 2000). An 
analysis of the impact of the parametric uncertainty [3] is conducted to weed out those that 
have an insignificant effect upon the system output. For example, Chen (2006) performed 
sensitivity analysis to identify the important parameters affecting the service life of the 
concrete structures.  
Three sensitivity analysis methods are factor screening, local-, and global-sensitivity analysis 
approaches. Factor screening determines which parameters have the greatest impact on the 
system output variability, by evaluating the output at the extreme values within the ranges of 
the parameters. For example we can change the cn in SCS method to runoff estimation[4]. 
Local sensitivity analysis utilizes first-order derivatives of system output quantities with 
respect to the parameters. It is usually performed for a nominal set of parameter values. For 
example roughness coefficient n in Manning equation to debit calculations [3]. Global 
sensitivity analysis typically uses statistical sampling methods, such as Latin Hypercube  
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Sampling, to determine the total uncertainty in the system output and to apportion that 
uncertainty among the various parameters. Classical and Bayesian statistical analysis 
techniques, including the analysis of variance and differential sensitivity analysis, can be 
pursued to assess the global influence of an input parameter on an output variable by 
sampling from each input parameter’s probability density function or from intervals of possible 
values. 
 
5-1-2-5- Multi-Physics Models 
In the past decade, different approaches have been proposed to quantify the uncertainty for 
individual physical models or simulation codes (e.g. see, Glimm and Sharp, 1999; Hanson, 
1999; Devolder et al., 2002; Bae et al., 2003; Hanson and Hemez, 2003; Oberkampf et al., 
2003; Millman et al., 2006; Witteveen and Bijl, 2006). For example, Hanson (1999) proposed 
a Bayesian probabilistic method for quantifying uncertainties in simulation predictions. Bae 
et al. (2003) used evidence theory to handle epistemic uncertainty about a structural system. 
Mathelin et al. (2004) and Witteveen and Bijl (2006) applied a polynomial chaos-based 
stochastic method for uncertainty propagation in numerical simulations. However, these 
existing approaches have not accounted for the uncertainty quantification in multiple modules 
of the system model, where the challenge is to combine data (available from different 
sources, in different formats) and model predictions regarding different physical phenomena 
(e.g., diffusion, chemical reaction, and mechanical damage), thus using all available 
information to quantify the overall prediction uncertainty. Urbina and Mahadevan (2009) have 
recently proposed a Bayes network approach to uncertainty quantification in multi-physics 
models. 
 
5-1-2-6- Model Error Quantification 
Model error: This results from approximate mathematical models of the system behavior and 
from numerical approximations during the computational process, resulting in two types of 
error in general – solution approximation error, and model form error. The performance 
assessment (PA) of a complex system involves the use of numerous analysis models, each 
with its own assumptions and approximations. The errors from the various analysis 
components combine in a complicated manner to produce the overall model error. This is 
also referred to as model bias. 
The roles of several types of uncertainty in the use of model-based simulation for 
performance assessment can be easily illustrated with the following example. Consider the 
probability of an undesirable event denoted by g(X) < k, which can be computed from: 
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where: 
X is the vector of input random variables, fx(x) is the joint probability density function of X, 
g(X) is the model output, and k is the regulatory requirement in performance assessment. 
Every term on the right hand side of Equation (5-9) has uncertainty. There is inherent 
variability represented by the vector of random variables X, data uncertainty (due to 
inadequate data,…) regarding the distribution type and distribution parameters of fx(x), and 
model errors in the computation of g(X). Thus it is necessary to systematically identify the 
various sources of uncertainty and develop the framework for including them in the overall 
PA uncertainty quantification. 
Model errors may relate to governing equations, boundary and initial condition 
assumptions, loading description or conceptual model, and approximations or errors in 
solution algorithms (e.g., truncation of higher order terms, finite element discretization, 
curve-fitting models for material damage such as S-N curve and …). Overall model error 
may be quantified by comparing model prediction and experimental observation, properly 
accounting for uncertainties in both. This overall error measure combines both model form 
and solution approximation errors, and so it needs to be considered in two parts. Numerical 
errors in the model prediction can be quantified first, using sensitivity analysis, uncertainty 
propagation analysis, discretization error quantification, and truncation (residual) error 
quantification. The measurement error in the input variables can be propagated to the 
prediction of the output. The error in the prediction of the output due to the measurement 
error in the input variables is approximated by using a first-order sensitivity analysis 
(Rebba et al., 2006). Then the model form error can be quantified of comparing sum of the 
all the above errors with overall error, or based on all the above errors, following the approach 
illustrated for a heat transfer problem by Rebba et al. (2006) [1]. 
 
 
5-1-2-6-1 Solution Approximation Error 
Several components of prediction error, such as discretization error (denoted by εd) and 
uncertainty propagation analysis error (εs) can be considered. Several methods to quantify 
the discretization error in finite element analysis are available in the literature. However, 
most of these methods do not quantify the actual error; instead, they only quantify some 
indicator measures to facilitate adaptive mesh refinement. The Richardson extrapolation 
(RE) method comes closest to quantifying the actual discretization error (Richards, 1997). (In 
some applications, the model is run with different levels of resolution, until an acceptable level 
of accuracy is achieved; formal error quantification may not be required.) Errors in uncertainty 

propagation analysis (εs) are method-dependent, i.e. sampling error occurs in Monte Carlo 

methods, and truncation error occurs in response surface methods (either conventional or 
polynomial chaos-based). For example, sampling error could be assumed to be a Gaussian 

random variable with zero mean and variance given by σ2/N where N, is the number of Monte  
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Carlo runs, and σ2 is the original variance of the model output (Rubinstein, 1981). The 

truncation error is simply the residual error in the response surface. Rebba et al. (2006) 
used the above concept to construct a surrogate model for finite element discretization error 
in structural analysis, using the stochastic response surface method. Gaussian process 
models may also be employed for this purpose. Both options are helpful in quantifying the 
solution approximation error. 
 
5-1-2-6-2 Model Form Error 
The overall prediction error is a combination of errors resulting from numerical solution 
approximations and model form selection. A simple way is to express the total observed error 
(difference between prediction and observation) as the sum of the following error sources: 

5-10              εobs = εnum + εmodel – εexp 

where: 
εnum, εmodel, and εexp represent numerical solution error, model form error, and output 
measurement error, respectively. 
However solution approximation error results from multiple sources and is probably a 
nonlinear combination of various errors such as discretization error, round-off and truncation 
errors, and stochastic analysis errors. One option is to construct a regression model 
consisting of the individual error components (Rebba et al., 2006). The residual of such a 
regression analysis will include the model form error (after subtracting the experimental error 
effects). By denoting εobs as the difference between the data and prediction, i.e., εobs = yexp 
- ypred, we can construct the following relation by considering a few sources of numerical 
solution error (Rebba et al., 2006): 

5-11         εobs = f(εh, εd, εs) + εmodel – εexp  
where: 
εh, εd, and εs represent output error due to input parameter measurement error, finite element 
discretization error, and uncertainty propagation analysis error, respectively, all of which 
contribute to numerical solution error. Rebba et al. (2006) illustrated the estimation of model 
form error using the above concept for a one dimensional heat conduction problem, assuming 
a linear form of Eq. (5-11). However, the function f(εh, εd, εs) is nonlinear, and may be 
approximated through a response surface with respect to the three error variables, using a 
polynomial chaos expansion. The quantity εmodel - εexp is simply the residual error of 
such a response surface. Thus the distribution of model error εmodel is quantified by knowing 
the distributions of residual error and measurement error. Note that the above approach to 
quantifying model form error is only within the context of model validation—where actual data 
is available from targeted validation experiments—and compared with corresponding model 
predictions. In the context of PA, however, the concern is with extrapolation in time and 
space, and no direct comparison is possible between prediction and observation (at the time 
when the PA is done). Quantifying the model errors during extrapolation is difficult, and a  
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Bayesian methodology might need to be pursued within restrictive assumptions (e.g., no 
change in physics). The Bayesian approach is discussed in Section 5-1-3. 
 
5-1-3- Model uncertainty quantification (calibration, verification, validation, and extrapolation) 

Model calibration is the process of adjusting model parameters to obtain good agreement 
between model predictions and experimental observations (McFarland, 2008). Both 
classical and Bayesian statistical methods are discussed for model calibration with available 
data. One particular concern is how to properly integrate different types of data, available at 
different levels of the model hierarchy. Assessment of the “correct” implementation of the 
model is called verification, and assessment of the degree of agreement of the model 
response with the available physical observation is called validation (McFarland, 2008). 
Model verification and validation activities help to quantify model error (both model form error 
and solution approximation error). A possible Bayesian approach is discussed for quantifying 
the confidence in model extrapolation from laboratory conditions to field conditions. 
After quantifying and propagating the physical variability, data uncertainty, and model error 
for individual components of the overall system model, the probability of meeting performance 
requirements (and our confidence in the model prediction) needs to be assessed based on 
extrapolating the model to field conditions (which are uncertain as well), where sometimes 
very limited or no experimental data is available.  
Rigorous verification, validation, and calibration methods are needed to establish credibility 
in the modeling and simulation. Both classical and Bayesian statistical methodologies 
have been successfully developed during recent years for single physics problems, and have 
the potential to be extended to multi-physics models of cementitious barrier systems. The 
methods should have the capability to consider multiple output quantities or a single model 
output at different spatial and temporal points. This section discusses methods for  
(1) calibration of model parameters, based on observation data;  
(2) validation assessment of the model, based on observation data; and  
(3) estimation of confidence in the extrapolation of model prediction from laboratory 
conditions to field conditions. 
 
5-1-3-1- Model Calibration 
Two types of statistical techniques may be pursued for model calibration uncertainty, the 
least squares approach, and the Bayesian approach. The least squares approach 
estimates the values of the calibration parameters that minimize the discrepancy between 
model prediction and experimental observation. This approach can also be used to calibrate 
surrogate models or low-fidelity models, based on high-fidelity runs, by treating the high-
fidelity results similar to experimental data. The second approach is Bayesian calibration 
(Kennedy and O’Hagan, 2001). This approach is flexible and allows different forms for the 
calibration factor, and it has been illustrated for a heat transfer example problem (McFarland 
and Mahadevan, 2007, McFarland, 2008).  
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In the literature, several researchers have calibrated their models using experimental results, 
especially if the phenomenon being modeled is complicated and the model is based on 
simplifying assumptions. For example, Tixier and Mobasher (2003) calibrated two parameters 
(reaction rate constant and fraction of porosity available for solid product deposition), and 
Krajcinovic et al. (1992) calibrated one parameter (reaction rate constant), while modeling 
the degradation of concrete structures under sulfate attack. 
 
5-1-3-2 Model Validation 
Model validation involves comparing prediction with observation data (either historical or 
experimental) when both have uncertainty. Since there is uncertainty in both model prediction 
and experimental observation, it is necessary to pursue rigorous statistical techniques to 
perform model validation assessment rather than simple graphical comparisons, provided 
data is even available for such comparisons. Statistical hypothesis testing is one approach 
to quantitative model validation under uncertainty, and both classic and Bayesian statistics 
have been explored. Classical hypothesis testing is a well-developed statistical method for 
accepting or rejecting a model based on an error statistic (see e.g., Trucano et al., 2001; Hills 
and Trucano, 2002; Paez and Urbina, 2002; Hills and Leslie, 2003; Rutherford and Dowding, 
2003; Dowding et al., 2004; Chen et al., 2004; Oberkampf and Barone, 2006)[1]. Validation 
metrics have been investigated in recent years based on Bayesian hypothesis testing 
(Zhang and Mahadevan, 2003; Mahadevan and Rebba, 2005; Rebba and Mahadevan, 
2006), reliability-based methods (Rebba and Mahadevan, 2008), and risk-based decision 
analysis (Jiang and Mahadevan, 2007 & 2008). 
In Bayesian hypothesis testing, prior probabilities were assigned for the null and alternative 
hypotheses; P(H0 ) and P(Ha ) respectively, such that P(H0 )+ P(Ha) = 1. Here H0 : model 
error < allowable limit, and Ha: model error > allowable limit. When data D is obtained, the 
probabilities are updated as P(H0 | D) and P(Ha | D) using the Bayes theorem. Then a Bayes 
factor (Jeffreys, 1961) B is defined as the ratio of likelihoods of observing D under H0 and 
Ha; i.e., the first term in the square brackets on the right hand side of: 
 
                                 5-12 

 

If B > 1, the data gives more support to H0 than Ha. Also the confidence in H0, based on the 
data, comes from the posterior null probability P(H0 | D), which can be rearranged from Eq. 
(5-12) as: 
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Typically, in the absence of prior knowledge, equal probabilities may be assigned to each 
hypothesis and thus P(H0) = P(Ha) = 0.5. The posterior null probability can then be further 
simplifi ed to B/(B+1). Thus a B value of 1.0 represents 50% confi dence in the null hypothesis 
being true.  
The Bayesian hypothesis testing is also able to account for uncertainty in the distribution 
parameters, as mentioned in Section 5-1-1-2. For such problems, the validation metric 
(Bayes factor) itself becomes a random variable. In that case, the probability of the Bayes 
factor exceeding a specified value can be used as the decision criterion for model 
acceptance/rejection.  
Notice that model validation only refers to the situation when controlled, target experiments 
are performed to evaluate model prediction, and both the model runs and experiments are 
done under the same set of input and boundary conditions. The validation is done only by 
comparing the outputs of the model and the experiment. Once the model is calibrated, verified  
and validated, it may be investigated for confidence in extrapolating to field conditions 
different from laboratory conditions. This is discussed in the next section. 
 
5-1-3-3 Confidence Assessment in Extrapolation 
The Bayesian approach can also be used for assessing the confidence in extrapolating 
model prediction from laboratory conditions to field conditions, from lower resolution to higher 
resolution analysis, and from the lower level to the higher level in system analysis, through 
the construction of the Bayes network (Jensen and Jensen, 2001). Bayes networks are 
directed acyclic graphical representations with nodes to represent the random variables and 
arcs to show the conditional dependencies among the nodes. Data in any one node can be 
used to update the statistics of all other nodes. This property makes the Bayes network a 
powerful tool to extrapolate model confidence from laboratory conditions to field conditions 
(Mahadevan and Rebba, 2005)[1]. After computing the posterior distribution of the output 
under field conditions, through the Bayes network, the confidence in the prediction can be 
calculated similar to Section model validation, using the Bayes factor.  
Markov Chain Monte Carlo (MCMC) simulation is used for numerical implementation of 
the Bayesian updating analysis. Several efficient sampling techniques are available for 
MCMC, such as Gibbs sampling, the Metropolis algorithm, and the Metropolis-Hastings 
algorithm (Gilks et al., 1996). Figure 5-5 shows an illustrative Bayes network for confidence 
extrapolation. An ellipse represents a random variable and a rectangle represents observed 
data. A solid line arrow represents a conditional probability link, and a dashed line arrow 
represents the link of a variable to its observed data if available. The probability densities of 

the variables Ω, z, and y are updated using the validated data Y. The updated statistics of Ω
, z, and y are then used to estimate the updated statistics of the decision variable d (i.e., 
assessment metric). In addition, both model prediction and predictive experiments are related 

to input variables X via physical parameters Φ. Note that there is no observed data available  
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for d; yet the confidence in the prediction of d, can be calculated by making use of observed 
data in several other nodes and propagation of posterior statistics through the Bayes network. 
The Bayes network thus links the various simulation codes and corresponding experimental 
observations to facilitate two objectives: 
(1) uncertainty quantification and propagation and  
(2) extrapolation of confidence assessment from validation domain to application domain. 
Bayesian method described in sub sections 5-3. 
 

 

 

 

 

Figure 5-5. Bayes Network [1] 

5-1-4- Probabilistic performance assessment 
Limit-statebased reliability analysis methods are discussed to help quantify the PA results in 
a probabilistic manner. Methods are also discussed to compute the confidence bounds in 
probabilistic PA results. Monte Carlo simulation with high-fidelity analyses modules is 
computationally expensive; hence surrogate (or abstracted) models are frequently used with 
Monte Carlo simulation. In that case, the uncertainty or error introduced by the surrogate 
model also needs to be quantified. Several methods are available in the reliability methods 
literature to efficiently perform probabilistic performance assessment, as fast alternatives to 
expensive Monte Carlo simulation. Performance assessment can be conducted with respect 
to single or multiple requirements. Efficient reliability analysis techniques that are based on 
first-order or second-order approximations or adaptive importance sampling can be used for 
this purpose. When multiple requirements are defined, computation of the overall probability 
of satisfying multiple performance criteria requires integration over a multidimensional space 
defined by unions and intersections of individual events (of satisfaction or violation of 
individual criteria). An important observation here is that the same methods that are described 
here for reliability analysis can also be used to compute the cumulative distribution function 
(CDF) of the output, which may be of more general interest with respect to uncertainty 
quantification of model output. The term reliability analysis here refers only to computing the 
probability of exceeding or not meeting a single threshold value, which is a special case of 
constructing the entire CDF. This section will discuss methods for probabilistic performance 
assessment with respect to individual criteria and multiple criteria. 
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5-1-4-1 Individual Criteria 
Probabilistic performance assessment can be based on the concept of a limit state that 
defines the boundary between success and failure for a system (Haldar and Mahadevan, 
2000). The limit state function, g, is derived from a system performance criterion and 
formulated such that g < 0 indicates failure. If the input parameters in the system analysis are 
uncertain, so will be the predicted value of g. The probability of system failure, i.e. P(g < 0) 
may be obtained from the volume integral under the joint probability density function of 
the input random variables over the failure domain as 
 

                                         5-14 
 

where: 
Pf is the probability of failure, fx is the joint probability density of a random variable vector X 
with n elements; vector x represents a single realization of X. Note that the integral is taken 
over the failure domain, or where g ≤ 0, so Pf = P(g ≤0). 
The basic Monte Carlo simulation method evaluates the above integral by drawing random 
samples from the distributions of the variables X, and by evaluating whether g ≤ 0 in each 
run. Then the failure probability is simply the number of samples with g ≤ 0 divided by the 
total number of samples. While this technique is very simple to implement, it is also very 
expensive for problems with low failure probability. 
The First Order Reliability Method (FORM) approximately estimates the failure probability as 
Pf = Φ(-β,) where β is the minimum distance from the origin to the limit state in the space of 
uncorrelated standard normal variables (In general, a set of random variables x may be non-normal and correlated, 

but these may be transformed to an uncorrelated standard normal space (i.e. the space of random normal variables with 0 mean and unit 

standard deviation) via a transformationT, i.e η = T(x).), as shown in Figure 5-6 (Hasofer and Lind, 1974). The 
minimum distance point on the limit state is referred to as the most probable point (MPP), 
and β is referred to as the reliability index. Finding the MPP is an optimization problem: 
 
                                         5-15 
where: 
 
η is the vector of random variables in the space of uncorrelated standard normal variables, 
and ||η|| denotes the norm of that vector. 
Several optimization techniques, such as Newton search (Rackwitz and Fiessler, 1978), and 
sequential quadratic programming (Schittkowski, 1983) can be used to find the MPP. 
Second-order reliability methods (SORM) are also available for higher accuracy; these take 
into account the curvature of the limit state in the failure probability calculation (e.g., Breitung, 
1984; Tvedt, 1990). Compared to basic Monte Carlo simulation, FORM and SORM require 
many fewer iterations to converge to the MPP, and thus drastically reduce the computational 
expense. 
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Figure 5- 6. First-order Reliability Method [1] 

 

5-1-4-2 Multiple Criteria 
When a PA is conducted with respect to multiple requirements, the overall system-level 
probability of meeting the requirements is calculated through unions or intersections of 
individual failure probabilities. 
In the case of unions (i.e., system fails if any one of the individual criteria is not met), the 
failure probability is: 
 
                                   5-16 
 
This system failure probability may be computed using either Monte Carlo simulation, or by 
extending the results of the first-order approximation in Section 5-1-4-1. Let B be the vector 
of reliability indices for each of the limit states, and the elements of the matrix R be the dot 
products of the corresponding α vectors (unit gradient vector of the limit state at the MPP in 
standard normal space) obtained from the FORM analysis for each limit state. Then the 
system failure probability in the above equation can be approximated as 1 – Φ(B, R), where 
Φ(B, R) is the standard normal multivariate CDF with correlation matrix R.  
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Closed-form representations of Φ(B, R) exist for the bivariate case (Dunnett and Sobel, 
1954). If more than two limit states are considered, then one may elect to use bounding 
formulae (Ditlevsen, 1979), importance sampling methods (e.g., Mahadevan and Dey, 
1998; Ambartzumian et al., 1998), multiple linearizations (Hohenbichler and Rackwitz, 
1987), or a moment-based approximation (Pandey, 1998). For nonlinear limit states, the 
joint failure domain may be identified through an iterative linearization procedure 
(Mahadevan and Shi, 2001). 
Similar concepts can be applied when the system failure is defined through intersections of 
individual failures (i.e., system fails only if all the individual criteria are not met). In that case, 
the failure probability is: 
 
                       5-17 
 
 
Again, the failure probability of the parallel system can be calculated either by Monte Carlo 
simulation, or from the results of the FORM analysis of its components as Φ (-B, R). In case 
FORM-based estimation is too approximate, Monte Carlo simulation can be used for higher 
accuracy, but with a large number of simulations. Efficient sampling techniques such as 
importance sampling (Mahadevan and Dey, 1998) may be used to reduce the computational 
expense. 
In some cases, overall system failure definition may not be a simple union or intersection 
of individual failures, but may need to be represented as combinations of unions and 
intersections. In most cases, the system will not necessarily be in one of the two states (failed 
or safe), but in one of several levels of performance or degradation. Accounting for evolution 
of system states through time considerably increases the computational effort. The effort 
increases further when iterative multi-physics analysis is necessary, as in the case of several 
simultaneously active degradation processes. One option is to use first-order, second 
moment approximations to B and R (Mahadevan and Smith, 2006), to reduce the 
computational expense, but at the cost of accuracy. A trade-off between accuracy and 
computational expense may be necessary. 
An important observation to note is that the probability calculations described in this section 
and prior are only with respect to physical variability, represented by the random variables X. 
The presence of data uncertainty and model errors makes the probability estimates 
themselves uncertain. Thus one can construct confidence bounds on the CDF of the output, 
based on a nested two-loop analysis. In the outer loop, realizations of the variables 
representing information uncertainty (such as distribution parameters of the probability 
distributions) and model errors are generated, and for each such realization, the output CDF 
is constructed in the inner loop. The collection of the resulting multiple CDFs is then used to 
construct the confidence bounds on the CDF. This nested implementation can become  
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computationally demanding; in that case, a single loop implementation that simultaneously 
performs both outer loop and inner loop analyses may be pursued (McDonald et al., 2009). 
Uncertainty quantification in performance assessment involves consideration of three 
sources of uncertainty inherent variability, information uncertainty, and model errors. 
Hear mentioned available methods to quantify the uncertainty in model-based prediction due 
to each of these sources, and addressed them in four stages – input characterization based 
on data; propagation of uncertainties and errors through the system model; model calibration, 
validation and extrapolation; and performance assessment. Flexible distribution families were 
discussed to handle sparse data and interval data. Autoregressive models were discussed 
to handle time dependence. Methods to quantify model errors resulting from both model 
form selection and solution approximation were discussed. Bayesian methods  were 
discussed for model calibration, validation and extrapolation. An important issue is 
computational expense, when iterative analysis between multiple codes is necessary. 
Uncertainty quantification multiplies the computational effort of deterministic analysis by an 
order of magnitude. Therefore the use of surrogate models, and first-order approximations of 
overall output uncertainty, were described to reduce the computational expense. 
Many of the methods described here have been applied to mechanical systems that are small 
in size, or time-independent, and the uncertainties considered were not very large. None of 
these simplifications is available in the case of long-term performance assessment of 
engineered barriers for radioactive waste containment, and real-world data to validate long-
term model predictions is not available. Thus the extrapolations are based on laboratory data 
or limited term observations, and come with large uncertainty. Therefore the benefit of 
uncertainty quantification is not so much in predicting failure probability or similar measures, 
but in facilitating engineering decision making, such as comparing different design and 
analysis options, and allocating resources for uncertainty reduction through further data 
collection and/or model refinement. 
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5-2- Rainfall forecasting 

Ensemble forecasting of weather phenomena is vital to disaster management based on risk and 

uncertainty. Some phenomena such as fog prediction (traffic disasters, bad air quality in poor visibility 

weather) is complex because fail in understanding of physics process (stratus subsidence, advection, 

radiative cooling near the ground) and models. Although fog is still not a direct produced by NWP but 

is diagnosed by local forecasters based either on statistical methods such as model output statistics 

(MOS; koziara et al. 1983) and neural network or on indirect model output variables or multimodels 

mesoscale ensemble prediction system [6]. In continue the texts focus on: 

 

- radar rainfall gauge adjustment 

- short-term rainfall forecasts based on ensemble precipitation nowcasts  

- Short- to Medium-Range of quantitative precipitation forecast (QPF) with NWP models, 

- probabilistic rainfall forecast from WRF model, 

 
5-2-1 Adjusted radar QPE [7] 
In fact, floods are the most widespread and harmful weather-related natural disasters. Therefore, high-

resolution precipitation estimates and forecasts are of significant interest for use in hydrological 

applications, especially in relation to hilly terrain. 

The standard method of collection for quantifying rainfall on the ground is a rain gauge. However, a 

gauge is often insucient because of the high spatial and temporal variability of rainfall, especially in 

rural basins scale and in low-density gauge networks. Thus, radar data is widely used to produce a 

quantitative precipitation estimation (QPE). Owing to their large coverage, high spatial resolution and 

temporal frequency, weather radars produce observations that adequately represent precipitation 

structure and evolution. Nevertheless, these radar measurements have limitations (causes 

uncertainties) that negatively affect the quality of the radar QPE such as: 

 

- Beam blockage by obstacles, such as buildings, trees, or mountains, which constitute a mask 

preventing rain detection. 

-  Overshooting and partial beam filling, due to the increase of the sounded volume and beam 

altitude at key distances from the radar. This might lead to underestimation of rain intensity. 

- Clutter, such as echoes from non-meteorological targets like airplanes, birds, insects, and dust 

particles, or WIFI interference which could result in unrealistic precipitation estimations. 

- Attenuation of the radar signal, which is the gradual loss of power that occurs during heavy 

rain. This effect is more important for radars with short wavelengths (C-band & X-band radars). 

Therefore, if a QPE with high precision is required from radar data, it is necessary to develop robust 

algorithms that deal with these influencing factors, especially clutter and signal attenuation effects. 

There have been several attempts to combine rain gauges and radar data to enhance the quality of radar 

rainfall estimates. 

Here focused on investigating the impact of gauge adjustment on the rainfall estimate from a Moroccan 

C-band weather radar located in Khouribga City. The radar reflectivity underwent a quality check  
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before deployment to retrieve the rainfall amount. The process consisted of clutter identification and 

the correction of signal attenuation. Thereafter, the radar reflectivity was converted into rainfall depth 

over a period of 24 h. An assessment of the accuracy of the radar rainfall estimate over the study area 

(case study follow) showed an overall underestimation when compared to the rain gauges (bias = -6.4 

mm and root mean square error [RMSE] = 8.9 mm). The adjustment model was applied, and a 

validation of the adjusted rainfall versus the rain gauges showed a positive impact (bias = -0.96 mm 

and RMSE = 6.7 mm). The case study conducted on December 16, 2016 revealed substantial 

improvements in the precipitation structure and intensity with reference to African Rainfall 

Climatology version 2 (ARC2) precipitations. Several national weather services around the world 

produce QPEs based on radar and other data sources like gauges, satellites, and NWP models. 

Case Study 

In Morocco, the Moroccan national meteorological service in Khouribga City implemented the first 

weather radar in 1985. Since 2013, the meteorological service has modernized its weather radar 

network and it now runs six single-polarization C-band Doppler radars and one dual-polarization C-

band Doppler radar . All the radars operate at a range of 250 km, where the radar network enables 

nowcasting of weather phenomena related to precipitation. Moreover, for QPE, the service has 

deployed Moroccan weather radars. However, there is an underestimation of the radar QPE when 

compared to the rain gauge network. Additionally, other weather radar networks worldwide have 

observed this radar measurement deficiency. Consequently, one should recognize that a comparison 

between rain gauges and radar QPEs is not a trivial topic.  

First, rain gauges provide amounts relative to point accumulations (around 200 cm2); whilst the radar 

QPE corresponds to a volume-averaged rainfall rate. Second, differences between gauge amounts and 

radar QPEs not only depend on the quality of radar measurements, but also on the quality of the rain 

gauge data and the density of the network. Therefore, to improve the quality of radar rainfall estimates 

using a rain gauge depends on good quality gauge data and well-validated merging methods. 

So, we must present an approach for radar rainfall estimation using the Moroccan C-band radar. First, 

the radar reflectivity was quality controlled to filter clutter and to correct signal attenuations. Following 

that, we applied a mixed adjustment model combining radar rainfall and gauge measurements. The 

case study also applied the method to 10 rainfall events from November–December 2016, and in 

January 2017. This period corresponded to the winter season—being the rainy season—characterized 

by an arid to semi-arid climate, with the average annual precipitation ranging from 200 to 500 mm. To 

be continue: 

 

- Radar and the gauge network 

- Data processing and mixed adjustment models 

- Results and conclusion 

- future areas for development 
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- Radar and the gauge network 

The radar data used in the current study were from an operational single-polarization C-band 

Doppler radar located in Khouribga City (Figure 5-7). See Table 5-1 for further details. The radar 

data are used for nowcasting and posterior analysis of extreme weather events over the plains in both 

the north and west areas of the radar. The southeast area of the radar is covered by the Atlas Mountains, 

which causes a severe beam blockage. Since the estimation can be very inaccurate at large distances 

from the radar, a maximum range of 150 km was used. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5-7. Study area, including orography. The blue circle represents Khouribga City’s radar coverage 

at 150 km, the red diamond refers to the radar’s location, whilst the black dots indicate rain gauges location.[7] 

 

 
Table 5-1. Technical specifications of the Khouribga City radar.[7] 
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The study area comprised a gauge network containing 11 stations, as shown in Figure 5-7. A 24 h 

rainfall amount, cumulated from 06:00 UTC day D to 06:00 UTC day D+1, was provided by six 

synoptic stations and five automatic weather stations (Figure 5-7). As for the synoptic stations, the 

rain amounts were measured by an automatic rainfall sensor (AKIM or CIMEL), then validated by 

the collocated tipping bucket mechanical rain gauge (Precis Mécanique). The data from the 

automatic weather stations (Metservice) underwent a quality check that consisted of applying 

climatological thresholds according to the meteorological situation and consistency analysis with the 

data from surrounding stations. The reception area varied between 200 cm2 and 400 cm2, while the 

resolution varied between 0.1 mm and 0.2 mm. 

 

- Data processing and mixed adjustment models 

In fact, Weather radars indirectly measure the power (received power Pr [W] ) of the electromagnetic 

signal back scattered (reflectivity: Z) by raindrops to the radar antenna. Both the radar reflectivity Z 

and rainfall rate, R [mm h-1], are functions of the raindrop size distribution (N(D), function D: drop 

diameter with v is drop terminal velocity).  
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r [m] is the range from the radar, C [Wm5 mm-6] is the radar constant and Z [mm6 m-3] is the reflectivity. 

 

Therefore, the relationship between Z and R is assumed to follow a power law, as expressed by 

Equation (5-21): 

 

                   5-21 

 

The coefficients a and b depend on the raindrop size distribution. Different sets of these coefficients 

were empirically calculated by former studies according to the meteorological situation and the 

hydrometeor type (e.g., rain, snow or hail). 
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- Quality control of radar reflectivity (Fig 5-8) 

The tool wradlib (https://wradlib.org) can used to process data. This tool contains a number of 

programs that treat radar data for hydrological and meteorological applications. The quality control 

process consisted of the Clutter detection and filtering and Correction of signal attenuation. 

 

Clutter detection and filtering: Gabella and Notarpietro proposed an easy-to-implement method based 

on a two-step algorithm. The first step consists of verifying the spatial consistency for each pixel 

according to its neighborhood, due to the fact that noisy echoes usually have larger spatial variability 

compared to the precipitation field. The second step is a test of compactness based on the difference 

between clutter and rain area/perimeter characteristics. This method produces satisfactory results for 

C-band radars no matter what the weather conditions are. 

 

Correction of signal attenuation: The main cause for systematic underestimation of radar rainfall is the 

attenuation of the radar signal by raindrops, especially in cases of heavy rain. The current study used 

Kraemer and Verworn’s gate-by-gate approach for attenuation correction. This method required no 

additional inputs (e.g., microwave links or mountain returns) other than the radar reflectivity. The 

attenuation for the first gate was calculated using the K–Z relationship, Equ. 5-22: 

 

                     5-22 

 

The attenuation K0 was then used to increase the reflectivity of the gates beyond. For a given gate, i, 

Ki is calculated using the reflectivity Zi and the sum of the attenuation from previous gates Equ. 5-23: 

 

 

                     5-23  

 

where Δr = 1 km is the gate length, and coefficients α and β are calculated in real time. 

First, the “initial guess” values of 1.67 * 10-4 and 0.7 were given to α and β , respectively, which 

generally produced an overestimation of the attenuation . Then, an iterative algorithm was applied to 

calculate the optimum of the coefficients. This method was efficient and did not require any further 

independent reference for α and β calculation. 

 

Z-R conversion: Due to a lack of information about the hydrometeor’s type and the raindrop size 

distribution of Khouribga City’s radar, multiple combinations of a and b were tested, especially those 

used for the U.S.Weather Surveillance Radar 1988 Doppler (WSR-88D). The comparison with rain 

gauges showed that the values a = 75 and b = 2 were the most reliable coefficients for the studied 

rainfall events. 
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Figure 5-8. (a) Raw, (b) cluttered and (c) filtered reflectivity pertaining to December 16, 2016 at 08:30 UTC; (d) raw, (e) path 

integrated attenuation (PIA) and (f) corrected reflectivity pertaining to December 17, 2016 at 02:20 UTC.[7]* 

 
*Over the study area, the surface altitude varied considerably 

between the northwest coastal zone, characterized by its lower altitude, and the mountainous region at 

the southeast. The use of a lower Constant Altitude Plan Position Indicator (CAPPI) would increase the 

masked area, while the use of a higher CAPPI might worsen the overshooting problem. Consequently, 

instead of using radar CAPPI at a fixed level, a MAXI-CAPPI was produced. This could be achieved by 

projecting the vertical maximum of the 3D cumulated rainfall field in a horizontal plane (considered as 

radar-only QPE).[7] 

 

 

- Gauge adjustment model (Radar–Gauge Merging Method) 

The gauge adjustment performed here used a mixed error model. This model assumes that the error 

(Rgauge –  Rradar) has mainly multiplicative (δ) contributions for large errors. The additive term ε is used 

in case of a small difference between the radar and the gauge: 
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The technical implementation is based on a least squares estimation of δ and ε for each rain gauge 

location by minimizing the sum (δ2 + ε2 ). Therefore: 
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                          5-28 

 

Using an inverse distance weighting, the coefficients are then interpolated to the other Pixels p in 

(Equations (5-27) and (5-28)). where di is the distance between the radar pixel p and the i_th rain 

gauge, while N is the number of rain gauges. 

Finally, at the p_th pixel, the adjusted radar QPE is given by Equation 5-29: 

 

 

                          5-29 

 

- Validation of the Adjusted Radar Rainfall Estimate 

Based on raw reflectivity with no clutter elimination or attenuation correction, Figure 5-9a shows 

clutter caused by WIFI creates two spokes of unrealistic precipitation (QPE) (120 mm max) that after 

applying the Gabella filter, this noises was eliminated (Fig 5-9b). 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 5-9. (a) Raw and (b) corrected radar quantitative precipitation estimation (QPE) from December 16, 2016 at 06:00 UTC to 

December 17, 2016 at 06:00 UTC [7] 
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Although the attenuation correction strengthened the precipitation cells locally (near the radar), as 

shown in Figure 5-9b, there was no substantial correction for the areas in the northeast sector, where 

rain gauges reached an amount of 35 mm at Rabat City (130 km distant from the radar). “This was 

probably due to the small amount of precipitation near the radar”[7]. Considering the stratiform 

precipitations studied were mainly generated at low altitude, underestimation of precipitation by the 

radar QPE could be due to overshooting or partial filling of the radar beam. In addition, the beam 

width is about 2 km at 130 km, which can reduce the reflectivity detected in the scan volume and 

consequently cause underestimation. 

Radar-only QPEs (24 h) were firstly retrieved from the quality checked reflectivity results for the 

studied events and then used in the adjustment model. For adjusting purposes, the radar rainfall 

estimate should be calculated at the gauge point. As such, the nearest nine grid points to the gauge 

location were selected for the radar-only QPEs. The median from this sample was considered as the 

radar estimated rainfall. 

The radar QPE, before and after adjustment, was compared to the rain gauge for 10 rainfall cases. This 

comparison raised difficult issues; in addition to the quality of both the radar and the gauge’s data, 

numerous factors had an important contribution. The gauge gave measurements of the surface 

precipitation over an area of about 200 cm2, while the radar estimated the mean precipitation amount 

of the upper levels of the atmosphere over a 6.25 km2 pixel. Other factors could also be taken into 

account, such as the precipitation structures, the terrain specifications and the wind-drift effect. 

The study area was covered by 24 h cumulated precipitations provided by 11 rain gauges. The gauge 

network was used for adjustment with no available additional gauge data for independent validation. 

Assessment of the quality of the adjusted QPE was performed using a cross-validation. For each 

event, a “leave-one-out” approach was applied, which meant that one rain gauge was considered as 

the test case and removed while the adjustment was performed using the remaining gauges. The 

adjusted QPE was then evaluated on the removed gauge. This procedure was repeated for each of the 

available gauges. 

To quantify the estimation error, the root mean square error (RMSE) and the bias error were calculated 

as follows: 

 

 
                          5-30 
 
 

                               5-31 

 

Figure 5-10 shows the scatter plots of the dispersion of 24 h radar-only QPE (Figure 5-10a) and the 

cross-validation of the adjusted QPE (Figure 5-10b) versus the rain gauges for all studied events. The 

radar-only QPE usually underestimates the gauges with a bias of -6.4 mm (37% within a distance of 

50 km) and a RMSE of 8.9 mm. The use of the radar–gauge merging method brought a substantial 

improvement. In fact, the cross-validation of the adjusted QPE showed a reduction of the bias to -0.96 
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mm and RMSE to 6.7 mm. 
 

 

 

 

 

 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
 

 

Figure 5-10. Statistics plot of 24 h radar QPE [7] 
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Case-by-case error statistics (bias and RMSE) for cross-validation of the radar-only QPE and the 

adjusted QPE are presented in Figure 5-10c. Accordingly, the bias was considerably reduced for all 

the studied cases. There was also a RMSE improvement for almost all the cases. The enhancement 

was clear for cases with large errors, such as in 4, 6, 8 and 9. In fact, these events were characterized 

by an important precipitation amount, especially for gauges more than 100 km from the radar. 

 

- Case study 

To assess the effective impact of the adjustment method, the 8th case (held on December 16, 2016) 

was deeply investigated. The 24 h rainfall amounts measured by the rain gauges (R_gauge), as well as 

the radar-only QPE (Rradar), are shown in Table 5-2. 

 
Table 5-2 Rain gauge measurements, 24 h radar-only QPE and adjusted QPE cross-validation at different 

gauge locations for December 16, 2016.[7] 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The radar-only QPE generally underestimated the rainfall detected by the rain gauges. The distance 

from the radar increased the underestimation—most notably in the case of Rabat City, located 134 km 

from the radar. 

This improvement was specifically remarked upon for the northwest sector of the radar, which was 

covered by homogeneous precipitations. However, for some gauges, the cross-validation of the 

adjusted QPE did not reveal a positive impact; for example, in Khouribga and Benhmed cities. This 

finding was essentially due to the discontinuous aspect of the precipitation field and the impact of the 

surrounding gauges. 

An independent validation was required to evaluate the relative performance of the proposed radar 

gauge merging method. This validation was performed, taking as reference the African Rainfall 

Climatology version 2 (ARC2) 24 h cumulated precipitations produced by the Climate Prediction  
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Centre (CPC) of the U.S. National Oceanic and Atmospheric Administration (NOAA). 

As described by Novella and Thiaw, ARC2 daily precipitation analysis is based on several input 

sources, specifically rain gauges and geostationary satellite data. Daily binary and graphical output 

files are produced with a resolution of 0.10, covering Africa from 400 south to 400 north and from 200 

west to 550 east. Validation with independent gauge data shows that the ARC2 precipitations have an 

efficient quality and can be used to characterize rainfall events over Africa. 

For the studied event, unlike the automatic weather stations, the rain data from synoptic stations were 

included in the ARC2 precipitations Fig 5-11. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5-11. 24 h cumulated precipitations (mm) from December 16, 2016 at 06:00 UTC to December 17, 

2016 at 06:00 UTC. (a) Interpolation of the rain gauges, and (b) African Rainfall Climatology version 2 

(ARC2) daily precipitation. The black circles are synoptic stations while the red ones are automatic 

weather stations. (c) Radar-only QPE, and (d) adjusted QPE. The squares represent the rain gauges 

location colored according to the observed precipitation amount. 
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Figure 5-11 presents the validation of the precipitation field regarding the ARC2 data, and shows that 

the field produced by a linear interpolation of the gauge data (Figure 5-11a) gave local information, 

but was unable to reproduce the precipitation structure over a larger area. The radar-only QPE (Figure 

5-11c) strongly underestimated the rainfall amounts. As for the adjusted rainfall field (Figure 5-11d), 

it generally matched the ARC2 data (Figure 5-11b). In fact, spatial structures and precipitation amounts 

were improved after adjustment.  

The adjustment helped to reproduce precipitation cells of more than 20 mm that were present in the 

ARC2 product (red ellipses in Figure 5-11b,d). The adjustment was also useful in strengthening the 

precipitation amounts, especially in the north of the radar area. Thanks to its high resolution (2.5 km 

against 10 km for ARC2), the adjusted QPE showed small-scale structures that could not be identified 

in the ARC2 rain field. However, an overestimation was observed due to the 35 mm rain gauge (Rabat 

City) and the lack of other surrounding rain gauges. At first glance, the 0 mm observed in Benhmed 

appeared to be unrealistic. However, the 0 value is coherent with the ARC2 field (Figure 5-11b) that 

did not include this rain gauge in its analysis. The overestimation by the radar QPE was probably due 

to the use of MAXI-CAPPI. 

The southeast sector of the radar was masked by the Atlas Mountains, which created a beam blockage 

and prevented a satisfactory detection of the precipitation over this area. The merging method was 

unable to deal with such phenomena, especially with the dearth of gauge observations over the 

mountains. 

 

- Discussion and Future areas for development 

The current methodology aimed to improve the rainfall estimation based on Moroccan weather radars. 

However, the study of rainfall events over November-December 2016 and in January 2017 showed an 

underestimation of the radar-only QPE according to the rain gauges. The attenuation correction alone 

was unable to sufficiently strengthen the precipitation cells far from the radar (>100 km) since, in all 

studied cases, there were only light to moderate precipitations near the radar. 

The underestimation was probably due to an overshooting problem of winter stratiform precipitations, 

mainly generated at low altitude. 

The adjustment based on a mixed model produced improved radar QPE, as shown by the cross-

validation of the adjusted QPE versus gauges. The detailed study of the events of December 16, 2016 

showed the positive impact of the gauge adjustment and also the sensitivity of the results to the density 

of the gauge network. 

A comparison with ARC2 precipitation analysis revealed that the adjustment method had a positive 

impact on the precipitation structure and intensity. Indeed, the precipitation cells generally fitted the 

ARC2 field, especially in the northwest sector, despite an overestimation found near Rabat City due 

to the lack of surrounding gauges. These findings agree with former studies in similar conditions [7], 

which also showed a better quality and a relevance of the hydrological applications of adjusted rainfall 

radars when compared to rain gauges, raw radars or satellites precipitation estimations. 

These promising results may certainly be enhanced by the use of a high density gauge network, 
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especially for spatially-discontinuous rainfall events. More case studies should be performed to 

thoroughly investigate the impact of different hydrometeor types, such as snow or hail, associated with 

snowfall or orographic precipitations over the other regions. In addition, the use of further data sources 

like satellites and NWPanalysis will doubtlessly bring more accuracy to the adjusted QPE. When it 

comes to a rough terrain like the study area, merging methods or using orographic precipitation 

climatology should be tested in order to improve the radar rainfall products, particularly when the 

constraints are specifically related to the orography [7]. 

 

5-2-2 Radar rainfall in urban hydrology  
This section focus on abstraction of roadmap for use of weather radar rainfall data in urban drainage 

which was published in Journal of Hydrology by Einfalt et al, 2004 and data processing, as well as 

methods and challenges in urban water cycle (flood prone areas, prediction, climate change impacts, 

resilience of urban systems to hydrological extremes, groundwater interaction, rivers, and online 

prediction/warning systems) based on Thorndahl, et al research, 2017. 

Climate change and consequently increase in extreme rainfall have been a significant catalyst for the 

development in urban hydrological models as well as radar technology. So it is vital to accommodate 

climate change and develop integrated hydrological models (integrated urban drainage, river and 

inundation models) to simulate urban flood risks and manage uncertainties based on to fully utilize 

the capacity of drainage systems or nowcasting of rainfall to manage of combined sewage flow in 

urban drainage systems. The use of more detailed and distributed models increased the demand for 

good quality, and high resolution inputs in radar data in urban hydrology. So spatial and temporal 

scales sufficiently require, although the errors in radar data are one of the most important sources of 

uncertainty in (urban) hydrological models (section 5-2-1). 

For example in a sewer system model in Belgium was shown by Willems and Berlamont (1999) that 

about 20% of the total uncertainty in the downstream sewer throughflow debits could be explained by 

the rainfall spatial variability and about 20-25% by the rainfall measurement errors, consisting in their 

case of rain gauge calibration errors, rainfall intensity resolution errors and errors by wind and local 

disturbances. For extreme events, e.g. flash flooding, uncertainties related to spatial variability and 

rainfall measurement errors are expected to be even larger (Bene et al., 2004; & etc.). Daliri and 

Kholghi (2010) showed effects of the storm time distribution and initial loss in rural flood modeling 

(SCS-CN) could have total erros more than 50%. We know urban flood is characterized by fast runoff 

and short response times on impervious surface and thus small timescale and space scales compared 

to rural hydrology. Hence there is a need for high quality and high resolution rainfall inputs into urban 

hydrological models in order to reduce uncertainties for hydrological responses. So, adjusted radar 

data (section 5-2-1) are vital and ideal in that respect, although development of signal processing and 

software-hardware in radar technology, based on atmosphere physics, e.g. antenns, frequencies, 

bandwidths, polarization, data correction, e.g. attenuation, clutter removal, and reflectivity-rainfall 

conversion equired. Many researchers such as Marshal and Palmer (1945), … Berne and Krajew-ski 

(2013) provide general imformation on radar rainfall. Also VDI (2014), and ISO (2017) have produced 

a standard on precipitation measurement by radar. 
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Table 5-3. Typical operating resolutions and maximum ranges for different 

types of weather radars used in hydrological applications [10] 

 

 

 

 

 

 

 

Moreover Berne et al. (2004) suggested a relation between the temporal (t in min) and spatial (r in km) 

resolution of r = 1.5t0.5  for Mediterranean rainfall condotions, and Van de Beek et al. (2012) 

extrapolated this to r = 5t0.3 for summer conditions in the Netherlands. The type and severity of a strorm 

(size, movement, shape, lifespan, intensity, etc.), basin size, and basin characteristics, might effect to 

select the space-time resolution of radar. A high-intensity convective thunderstorm with small spatial 

extent in urban areas will need a higher resolution in both space and time to be resolved, in contrast 

a stratiform long-duration storm in large rural areas.  

 

To be continue three key areas and relevant applied topics, readers linked to [10]. 

-Resolution of radar data (table 5-3) 

-Rainfall estimation, radar data adjustment and quality 

-Nowcasting of radar rainfall and real-time applications 

-Other relevant applications of radar in urban hydrology 

 

5-2-3 NWP rainfall forecasting 

Unknow future precipitation is the dominant source of uncertainty for many streamflow forecasts. 

Numerical weather prediction (NWP) models can be used to generate quantitative precipitation 

forecastse (QPF) to reduce this uncertainty. For streamflow nowcasting (very short lead time, e.g., 12 

h) many application are based on measured in situ or radar-based real-time precipitation and/or the 

extrapolation of recent precipitation patterns but QPF based on NWP models output may be more 

useful in extending forecast lead time, particularly in the range of a few days to a week, although low 

NWP midel skill remains a major obstacle [12]. Main topics, in this section are: 

- Review of NWP models 

- Introduction to ensemble QPF methods and streamflow forecasting techniques 

- Integrated systems that use NWP model output to force hydrologic models 

- Issues of spatial scale and initial conditions (section 5-2-2 & 5-2-1) 

- Identify of operational integrated systems (section 5-3-1) 

- Characterization of uncertainty and the role of ensembles (section 5-3-1) 
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NWP models use current weather conditions as input to atmospheric models to predict the evolution 

of weather systems through the use of mechanics and thermodynamics. NWP model output ensembels 

have been generated since the early 1990s (e.g., ECMWF ensembles started in 1993) and probabilistic 

weather forecasts have been used to articulate forecast uncertainty.  

In ensemble forecasting, one or more dimensions of forecast uncertainty are explored through the use 

of scenarios. There are many ways to categorize ensembles. Ensembles methods classify based on[12]: 

 

- Number of models used. Some ensembles combine deterministic forecasts from multiple 

models (Hagedorn et al., 2005).  

- Single model with perturbed initial conditions, boundary conditions, or parameters (Toth and 

Kalnay 1993). 
(The ensemble members must represent the probability distribution of the state of atmosphere and improve the 

ensemble forecast skill compared to the control forecast. Toth and Kalnay (1997) found that only a minimal 

improvement in ensemble forecasts is obtained beyond 20 members. However, they also found that there was 

still much to be gained in the temporal and spatial relationship between spread and error by increasing the size 

of the ensemble beyond 40 members) 

- “Grand” or “super” ensemble, a collection of ensembles from individual models 

(Krishnamurti et al. 1999; park et al. 2008). 

- “lagged ensembles”, to use forecasts (ensemble or deterministic) from other lead times for the 

same target period to form what has been called “ lagged ensembles” (Mittermaier 2007). 

- Ensemble QPF from data extrapolation, and blended/hybrid products. For instant, radar, 

satellite, NWP model forecasts, and in situ rain gauge data can be blended statistically. This 

can improve the reliability of the forecasts in the very short term, (geographic coverage of 

satellite, improve the spatial-temporal resolution of NWP model outpu. 

Persistence- and extrapolation –based forecasts can be better than NWP models at shorter lead times. 

At longer lead times, the initial conditions wash out and NWP models become the most reliable source 

for information (Zipser, 1990). Blended products ensure that the best available information is used at 

each lead time. Therefore, blending is an important component of very short lead time (<12 h ahead) 

“nowcasting” forecasting systems. Nowcasting is a technique for very short-range forecasting that 

maps the current weather and then uses an estimate of its speed and direction of movement to forecast 

the weather a short period ahead (usually 0-7 h lead time) based on current or most recent observations. 

Examples of such blended nowcasting QPF are the U.K. Short Term Ensemble Prediction System 

(STEPS; Bowler et al. 2006) and Ganguly and Bras (2003). 

 

Large events are more predictable and small events have a shorter lifetime. Information from an NWP 

model is used to extrapolate or propogate larger precipitation features, whereas the smaller events are 

filled using a statistical method. Many scenarios are generated to represent various moving speeds for 

large events and different random statistics for small events. Active research has been undertaken to 

extend the forecast lead time by integrating radar and satellite data (Golding 2000). 
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Streaflow forecasting methods include conceptual, physical, statistical, routing, etc. that described in 

prior chapters. Some of these models, accept precipitation and potential evapotranspiration (PET) as 

forcings, calculate losses to actual evapotranspiration, simulate the changes in surface and deeper soil 

moisture, and produce runoff. Oudin et al. (2006) found that, while sensitive to systematic errors in 

PET, hydrologic models are relatively insensitive to random errors in PET; it is often sufficient to 

assume that PET over the forecast horizon is the same as the long-term historical average. Therefore, 

the main streamflow forecasting challenge is to estimate the moisture in catchment soils by using 

recent measured precipitation and predicted future precipitation. The catchment may be lumped, in 

that a single time series of catchment average precipitation forces the model. It may be 

semidistributed in that the subbasins are represented as irregulaely shaped but hydrologically 

homogeneous. Distributed models also relate model parameters to fields of soil characteristics and 

other physical properties, commonly on an evenly spaced grid (which is most similar to NWP models). 

Around the world, the most common forecasting method uses a combination of real-time precipitation 

and streamflow gauge data (some cases radar, satellite data, and NWP model); forecasts are often 

issued in a deterministic mode. 

The U.S. National Weather Service (NWS) has generated ensembles using ESP method (Ensemble 

streamflow prediction) for three decades (Schaake 1978). It has been particularly successful in 

springtime in snowmelt-dominated regions where the initial conditions (snowpack and soil moisture) 

largely determine the expected volume of flow and the climate scenarios (e.g., temperature) provide a 

range of possibilities for timing and rate of flow. ESP has been applied in non-snowmelt dominated 

areas, mostly in combination with seasonal climate (e.g., precipitation) forecasts to determine the 

likelihood of each ensemble trace (Croley and Hartmann, 1987). In these non-snowmelt dominated 

areas, ESP has been used for short-range (<15-day lead time) operational forecasting. 

The forecast ranges are based on WMO definitions:  

- Nowcasting range is 0-2 h ahead, 

- Very short-range forecasting is 0-12 h, 

- Short-range forecasting is 12-72 h, 

- Medium-range forecasting is 72-24 h. 

Shrestha, et al., 2013, found that it is necessary to remove the systematic biases in NWP rainfall 

forecasts with Australian Community Climate Earth-System Simulator (ACCESS, for four models: 

ACCESS-G with 80 km resolution, ACCESS-R with 37.5 km, ACCESS-A with 12 km, and 

ACCESS -VT with 5 km), particularly those from low resolution models (relief and lead time is 

important), before the rainfall forecasts can be used for streamflow forecasting, (Fig 5-12),[13]. 

Moreover, Na & Yoo, 2019, found that as the lead time increases, the quality becomes even lower. 

They proposed method considers all available rainfall forecasts as ensemble members at the target time 

(section5-3-1-1) [14]. The proposed method is tested with McGill Algorithm for precipitation 

Nowcasting by Lagrangian Extrapolation (MAPLE) rainfall forecasts for four storm events. The 

quality of the ensemble forecast is also found to be better than of the single forecast. 

 

 

 



       

         Flood Forecasting Uncertainties 

 

 

 

2
2

3
 

 

 

 

 

 

 

 

 

 

 

 
Fig. 12. Schematic of NWP model runs [13] 

 

5-3- Flood forecasting 

Computers continue to get more powerful. As a result there is absolutely no doubt that distributed 

hydrological models will become more detailed, more complex and more closely coupled to 

geographical information systems for the input of data and display of results [16]. This, in one sense, 

is the current start of the art. There is a question, however, as to whether this type of development will 

lead to better hydrological predictions. The answer to this question is not at all clear. More complexity 

means more parameters; more parameters mean more calibration problems; more calibration problems 

often mean more uncertainty in the predictions, particularly outside the range of the calibration data. 

Something that has not changed is that the application of all types of model is limited by the available 

data on how hydrological systems work. 

Models are data constrained because of the strong limitations of current measurement techniques. 

However, even if improved measurement techniques lead to a better understanding of complex flow 

processes, it appears that it will be necessary for the foreseeable future to distinguish between models 

developed for understanding (which describe those processes in detail at small scales) and models 

developed for prediction at catchment scales [16], [3], [17,18]. (Chapter2). 

Why are New Modelling Techniques Needed? 

In considering the next generation of hydrological models, it is important to distinguish between different reasons for 

modelling. What the next generation model looks like might well be different for different purposes. If the interest is only to 

show that we “understand our science and its complex interrelated phenomena” then a model structure might look very 

different to that needed to make flood forecasts at a particular site of interest. Using a complex process model for flood 

forecasting might not be sensible either in improving the accuracy of predictions or in providing forecasts with sufficient lead 

time for people to react to a flood warning. In other cases, a model that predicts the fluxes in different flow pathways might 

be needed. Such models might be used to explore the effects of land management on water fluxes and water quality, for 

example. There are also increasing demands to understand the links between hydrology and ecology in effecting 

improvements to the water environment and maintaining biodiversity, demands given impetus in Europe by the requirements  
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of the Water Framework Directive. It seems unlikely that all these different reasons for using models can be met by a single 

modelling approach in the future. The next generation of hydrological models is likely therefore to continue to be diverse. 

How are the REW Concepts Different from Other Hydrological Models? 

The difference is in the way in which the REW concepts require that the mass, energy and momentum balance equations are 

considered in an integrated and consistent way at the scale of a discrete partitioning of the landscape into REW elements. 

The REW framework is based on physics, in that it sets out the fundamental balance equations for the processes underlying 

the hydrological response of a control volume element of the landscape. 

“A useful background volume is the IAHS Benchmark volume of classic papers in rainfall–runoff 

modelling prepared by Keith Loague (2010). The volumes edited by Vijay P Singh (1995) and Singh 

and Frevert (2002a, 2002b, 2005), which collected chapters written by developers of models for large 

and small catchments, are also valuable sources of information. Distributed models of various types are 

discussed in the texts by Mike Abbott and Jens Christian Refsgaard (1996), David Maidment (2002) and 

Baxter Vieux (2004); lumped conceptual ESMA-type models by Thorsten Wagener et al. (2004); and 

linear systems models by Jim Dooge and Philip O’Kane (2003). There are also many relevant articles 

in the Encyclopaedia of Hydrological Sciences edited by Malcolm Anderson (2005), including a section 

devoted to rainfall–runoff modelling in Part 11 of Volume 3 [16]” 

 

5-3-1 Integrated forecast systems 

First, must to mention that some systems do not rely on NWP models while generating very short-term 

(0-12 h lead times) streamflow forecasts (non-NWP system). The general state of the art in the 

integration of NWP model output and streamflow forecasts showed in Fig. 5-13. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5-13 NWP/radar/satellite-driven streamflow forecast system [12] 

In this figure, ‘‘extrapolation’’ means a future forecast based on an 

extrapolation of recent measured patterns, such as is used in 

STEPS (very short to medium range forecasting) 

 

 



       

         Flood Forecasting Uncertainties 

 

 

 

2
2

5
 

For example, SEPA system uses both measured and forecast radar precipitation and lumped 

Probability Distributed Moisture (PDM) hydrologic model for flash flood forecasting through the U.K. 

Nimrod system. Results show that Nimrod’s precipitation predictions are uncertain and sometimes 

biased, although there is considerable benefit in their use for flood forecasting compared to not using 

precipitation forecasts [12]. 

Roberts et al. (2009) and Jasper et al. (2002) pointed out that radar coverage is often incomplete because 

radar scans are too high to see low-level precipitation, or because of ground clutter and beam blockage 

in rugged terrain. In this situation, high-resolution NWP model simulation can be used to fill the gaps, 

making such blended NWP model/radar systems more robust than single-source systems. For systems 

that use deterministic NWP model/radar and other information, an example is the U.K. real-time flood 

forecasts issued by the Environment Agency in collaboration with the UKMO (Golding 2009). Real-

time precipitation, river level/ flow, sea level, and measured radar data are used to initialize the 

hydrologic model. Six-hour-ahead radar extrapolation and raw output of forecast precipitation from 

UKMO NWP models are used as QPF for the hydrologic forecasting models. The skilful lead time of 

the hydrologic forecasting system varies from 1–12 h across the United Kingdom depending on the 

distance to the coastal area. Japanese hydrologists combine NWP model output products and radar-based 

precipitation information to provide streamflow forecasts at 6 h lead times[12]. 
“(The Mesoscale Alpine Programme’s Demonstration 

of Probabilistic Hydrological and Atmospheric Simulation 

of Flood Events in the Alpine Region (MAP 

D-PHASE) project issued streamflow forecasts using 

radar information and deterministicNWPmodel forecasts 

for the summer and autumn of 2007. France establishedthe National Hydrometeorological Service (SCHAPI) 

to develop techniques for merging short-range forecasts 

from radar-based techniques and NWP models, and to 

assess the ensemble precipitation forecast uncertainty 

for nowcasting. Other similar forecasting systems include 

the U.S. Gridded Flash Flood Guidance system, 

Central American Flash Flood Guidance system, Northern 

Austria Flash Flood Forecast system, Thailand Decision 

Support System for Flash Flood Warning, the 

Geospatial Data Exchange System (GEOREX) flood 

forecasting system of Malaysia, and systems in place in 

Germany and the Republic of South Africa (see more 

details in Hapuarachchi et al. (2011))” 
For short- to medium-range forecasts (12–240 h), the integration of NWP and hydrologic models has 

been a focus of the research community and there has been relatively less operational adoption. For 

example, Clark and Hay (2004) used 40 years of eight-day atmospheric forecasts over the contiguous 

United States from the National Centers for Environmental Prediction (NCEP) reanalysis project to 

assess the possibilities for using the Medium-Range Forecast (NCEP–MRF) model output to aid 

predictions of streamflow. They concluded that NCEP–MRF output must be preprocessed before it is 

used for hydrologic predictions because of the systematic precipitation biases (exceeding 100% of the 

mean) and temperature biases (38 co) [12]. 
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They used a model output statistic (MOS) technique to downscale the NCEP forecasts to station locationsand 

a forward screening multiple linear regression model to improve forecasts of precipitation and temperature. 

After preprocessing, Clark and Hay’s temperature forecasts were improved while precipitation forecasts were 

mixed. Eight-day streamflow forecasts produced using the MOS-corrected NCEP–MRF output were 

compared with those produced using the climatic ESP technique. They found that MOS-corrected streamflow 

forecasts had the most skill in snowmelt-dominated basins where temperature is the major factor. In rainfall-

dominated basins, MOS-corrected streamflow forecasts were no better than those from the ESP method, 

primarily because the original forecasts of precipitation were poor. 

Habets et al. (2004) used QPF from two French NWP models as inputs to a hydrologic model. The QPF 

used in their study underwent statistical correction or regional adaptation to correct errors. By comparing 

forecasts in which the initial state was randomized versus forecasts in which the initial state was 

obtained by using recent measured precipitation and temperature, they found that streamflow forecasts 

in this region were very sensitive to the initialization of soil moisture and snowpack. They found 

systematic biases in precipitation amount (on the order of ;20%) and phase (rain versus snow). 

Rabuffetti and Barbero (2005) described the development and implementation of a real-time flood 

forecasting system with a lead time of 48 h in the Piemonte region of Italy. The forecasting system is 

composed of survey, warning, alarm, and emergency phases. The operational FloodWatch, a 

geographical information system (GIS)- based decision support system (DSS) for real-time flood survey 

and forecasting, was established in 2000, and is a 24-h operating service. The information that feeds into 

the system includes telemetered meteorological and hydrologic gauge data, two weather radars, weather 

forecasts at local and global scales (NWP), and hydrologic modeling for flood forecasting on the main 

river network. They find that NWP model outputs allow warnings with lead times needed by the civil 

protection agencies; use of NWP model output also introduces many sources of uncertainty so that the 

deterministic simulations need careful interpretation. Many studies reported that NWP model outputs 

introduce significant uncertainty into hydrologic modeling. Georgakakos and Hudlow (1984), Damrath 

et al. (2000), Ebert and McBride (2000), Habets et al. (2004), Ebert et al. (2007), and Lu et al. (2010) all 

stated that QPF quality needs to be improved to provide reliable hydrologic prediction. Errors in QPF 

location, timing, and intensity hampered the direct QPF application to hydrologic prediction.  

Ensemble forecasts attempt to quantify this uncertainty and this is the focus of the remainder of this 

section[12]: 

 

5-3-1-1 Characterization of uncertainty and the role of ensembles 

This subsection describes the various sources of uncertainty in streamflow forecasts. The purpose is to 

show that the common strategy of using ensemble forcings is not a complete representation of 

uncertainty[12]. The full spectrum of hydrologic prediction uncertainty includes several aspects:  

1) model input data such as precipitation and temperature uncertainty; 

2) model initial conditions such as soil moisture, snow, and river flow uncertainty; and 

3) hydrologic model uncertainty due to its physical representations and parameter uncertainty. 

To account for the full range of uncertainty, Schaake et al. (2007) listed the main elements of hydrologic 
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ensemble prediction system; these are: 

1) an atmospheric ensemble preprocessor,  

2) a data assimilator, 

3) an ensemble of hydrologic models, 

4) a hydrologic ensemble processor, and 

5) a forecast product generator. 

There have been studies about the individual aspects of uncertainty along this chain (Chain of uncertainty). 

Many studies have been done on the accuracy of NWP model forecasts in predicting precipitation, such 

as Houtekamer et al. (1996), Stensrud et al. (1999, 2000), Ebert and McBride (2000), Bright and Mullen 

(2002), Sattler and Feddersen (2005), and Ebert et al. (2007). 

Several authors have then carried through NWP model uncertainty into the hydrologic forecasts, such as 

Kobold and Susˇelj (2005), Bartholmes and Todini (2005), Gouweleeuw et al. (2005), Pappenberger et 

al. (2005), Collier (2009), Xuan et al. (2009) and Mascaro et al. (2010).  

In all cases, the hydrologic model results were very sensitive to the forcing data. 

Other authors have attempted to isolate the uncertainty components. Krzysztofowicz (1999, 2002) 

separated forecast uncertainty into ‘‘input’’ (mainly precipitation) and ‘‘hydrology’’ (a blend of model, 

parameter, and others) uncertainty and then integrated the two uncertainty components into ‘‘forecast’’ 

uncertainty. 

A Bayesian postprocessor was used to analyze the output component error associated with particular 

data input types (Collier and Robbins 2008). Carpenter and Georgakakos (2004, 2006) analyzed the 

influences of precipitation input and hydrologic model parametric uncertainty on the flow simulation 

uncertainty. They found that, when using radar data, flow uncertainty is closely related to the catchment 

scale. Collier (2009) found that the error in weather radar precipitation data propagates through a fully 

distributed model. To account for the short-term precipitation errors, Collier (2009) used short-range 

ensemble precipitation forecasts. 

Efforts to quantify hydrologic (i.e., model parameter, initial condition, and physical representation) 

uncertainty have had mixed results. For example, Shi et al. (2008) found that an objectively calibrated 

Variable Infiltration Capacity (VIC) model and noncalibrated but bias-corrected VIC model simulation 

produced the similar forecast skill scores for seasonal streamflow forecasts. However, without bias 

correcting, Yilmaz et al. (2005) reported that hydrologic model forecasts forced with satellite-based 

precipitation data were significantly worse when the hydrologic model parameters were not calibrated 

to the forcing dataset. Bohn et al. (2010) found in the context of seasonal hydrologic forecasting, 

multi(hydrologic)-model averaging may be no more effective in reducing forecast errors than applying 

a monthly bias correction to a single model in snow-dominated basins. 

The key objective of investigating the uncertainty chain is to identify the sources of dominant uncertainty 

and to extract the useful forecast information from the uncertain system and effectively communicate 

forecast confidence to end users. Unfortunately, the dominant uncertainty is often basin specific or time- 

or space-scale dependent. Part of the issue is how few studies have attempted to analyze the total system 

error, especially the components of hydrologic error (e.g., Krzysztofowicz 1999; Pappenberger et al. 

2005). 
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At times it seems like the only reliable conclusion from the literature is that QPF uncertainty is the 

dominant source in a vast array of hydrologic forecasting contexts. 

To complicate the picture, hydrologists have several tools for compensating for uncertainties within the 

system. In short-range streamflow forecasting, data assimilation procedures are often implemented to 

reduce hydrologic uncertainty. These procedures seek to reduce the difference between the simulated 

and measured by changing the input forcing (input updating), changing how the model simulates flow 

(state updating and parameter updating), or simply by postprocessing the output (output updating; 

Madsen and Skotner 2005). Madsen and Skotner (2005) updated the model parameters for streamflow 

forecasting, and Bogner and Kalas (2008) used a dynamic linear model to update the model states. Seo 

et al. (2003) is an example of output, input, and state updating, among many others. Output updating 

is cost effective and is a commonly used procedure (Sene 2010). 

Although such model corrections are effective during forecasting, they can lead to unexpected 

interactions. For example, output updating may be calibrated on the simulation performance of the 

hydrologic model. If the real-time forecasts use state updating but this was not used in the historical 

simulation, are the statistics for the output updating still reliable? Furthermore, forecast errors may be 

due to deficient models (e.g., poor representation of certain processes); model improvement may be more 

direct and effective than data assimilation at reducing errors. 

Relevant programs of ensemble forecasts  

The use of NWP model–based ensembles (section 5-2-3 ) may be to quantify uncertainty in hydrologic 

forecasts. However, the common problem in the ensemble forecast system identified by many studies is 

the inaccuracy of the NWP model forecast itself. In many of these studies a deterministic forecast is 

included as a control or baseline. The recent research literature has many studies of ensemble streamflow 

forecasting. Cloke and Pappenberger (2009) is an excellent contemporary review[12]. 

Ensemble precipitation forecast distribution underdispersion (i.e., overconfidence) is also a common 

complaint. Charges of probabilistic underdispersion have been leveled at ensemble hydrologic forecasts 

as well, so it may be a universal challenge in ensemble forecasting. 

One of the fully operational systems where NWP model–based ensembles are routinely and widely used 

to generate streamflow forecasts is the European Flood Alert System (EFAS; Thielen et al. 2009) in the 

Joint Research Centre of European Commission and the Swedish Meteorological and Hydrological 

Institute (SMHI; Olsson and Lindstro¨m 2008). All other systems are preoperational or use ensemble 

QPF episodically and/or for a limited subset of catchments. EFAS incorporates deterministic NWP 

model output from ECMWF (10-day lead time) and the German Meteorological Service (DWD; high-

resolution 7-day lead time). It also uses a full set of 50 ensemble members from ECMWF and a 16-

ensemble-member run from the Consortium for Small-Scale Modeling Limited-Area Ensemble 

Prediction System (COSMO-LEPS). The NWP model results force a spatially distributed version of a 

hybrid conceptual–physical hydrologic model LISFLOOD (de Roo et al. 2000). Ensemble members 

are run at a 24-h time step, and deterministic forecasts are run at a 1-h time step. 

An international initiative to foster hydrologic ensemble prediction science is worthy of mention: the 

Hydrologic Ensemble Prediction Experiment (HEPEX). HEPEX is an open ‘‘international effort that  

 

 



       

         Flood Forecasting Uncertainties 

 

 

 

2
2

9
 

brings together hydrological and meteorological communities to develop advanced probabilistic 

hydrologic forecast techniques that use emerging weather and climate ensemble forecasts’’ (Schaake 

et al. 2006; Thielen et al. 2008). The objective of HEPEX is reliable quantification of hydrologic 

forecast uncertainty. 

Cloke and Pappenberger (2009) discussed the problems and challenges in short- to medium-range 

hydrologic ensemble prediction. They identified seven challenges, which are paraphrased here: 
1) Current NWP model output skill is low; resolutions are too coarse and too few ensemble members exist. 

2) We do not understand the total uncertainty in the system and so will have trouble with extremes. 

3) Hydrologic data assimilation is underutilized. 

4) Studies rely on too few case studies. 

5) There is not enough computer power. 

6) There is inexperience with ensembles in operational flood forecasting environments. 

7) Communicating uncertainty and probabilistic forecasts is difficult. 

 

When computational power is a limitation, deterministic NWP model forecasts are often a reasonable 

alternative in order to extend forecast lead time. Another issue that also exists for ensemble systems, 

but is not emphasized by Cloke and Pappenberger, is how to couple the coarse NWP model [e.g., the 

12-km Australian Community Climate and Earth-System Simulator (ACCESS)] forecasts to a smaller-

scale hydrologic model (e.g., 5 km). While it might not be necessary to rescale NWP model 

deterministic forecasts (though bias correction may still be needed), ensemble NWP model output is 

often at a coarser scale than hydrologic models and would need both downscaling and bias correction. 

A variety of downscaling methods exist (e.g., Venugopal et al. 1999). 

 

5-3-1-2 Integrated NWP models and hydrologic forecast systems 
SELECT A HYDROLOGIC MODEL 
The choice of hydrologic model depends on the forecast lead time, catchment size, and the 

characteristics of runoff (Arduino et al. 2005). It will also depend on the operational forecasting 

center’s experience and legacy systems or expected accuracy. Physics-based distributed hydrologic 

models are more likely to represent the cause–effect relationships leading to changing runoff behavior 

(Arduino et al. 2005). In the distributed model, flood inundation information across the catchment 

could be more easily derived. However, the distributed model is usually parameter intensive and there 

is uncertainty associated with parameters. Furthermore, physics based distributed models still trail 

behind conceptual lumped models on most performance measures evaluating simulated streamflow at 

the catchment outlet (Smith et al. 2004). Pagano et al. (2009) evaluated many hydrologic models in 

order to determine their ability to simulate streamflow and their potential for operational 

implementation in Australia. Many models performed equally well, although Genie Rural a´ 4 

Parametres Journalier (GR4J; Perrin et al. 2004) stood out for its combination of performance and 

parsimony, having only four parameters [12]. 
CONSIDER HYDROLOGIC UNCERTAINTY 
Parameter uncertainty could be examined by using Pareto sets that are generated during the model 

calibration (e.g., Pappenberger et al. 2005). If the calibration is trying to satisfy many objectives (e.g.,  
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the fit to high flows, low flows, etc.), the Pareto set is the collection of parameter sets that perform the 

best for a given mixture of objectives. It is unknown if certain parameter sets behave equally well with 

different forcings such as measured and NWP model–simulated precipitation. Model structure 

uncertainty could be examined using multimodel ensemble approaches (e.g., Nijssen et al. 2003). The 

simplest way to investigate the initial condition uncertainty is to generate model initial conditions 

based on the historical climate data for particular days and examine the ensemble of hydrologic model 

simulations using various initial conditions. To compare the uncertainties from all aspects, there should 

be a common reference (measured streamflow). 
REMOVE SYSTEMATIC HYDROLOGIC BIASES 
A hydrologic model forced with measured precipitation may be able to simulate measured streamflow 

well in the calibration period, but may produce biased results in other periods. If bias is present and it 

is systematic, it should be removed by postprocessing. 
CONSIDER THE EFFECTS OF HYDROLOGIC DATA ASSIMILATION 

Data assimilation can be used to improve hydrologic forecasting skill. Output updating (e.g., Anctil 

et al. 2003) may be the method of choice because it is cost effective and widely used. In this method, 

an error-correction forecast model is built based on the measured hydrologic model residuals; 

predictions of the anticipated error are used to adjust the output of the hydrologic model. It is an open 

question if output-updating methods calibrated on simulated flow will still be valid for models forced 

with NWP model output. Furthermore, can output updating correct biases introduced by the NWP 

model (while also not conflicting with the bias adjustment mentioned in the previous 

recommendation)?  
PERFORM HOLISTIC EVALUATION OF INTEGRATED FORECAST SYSTEM 

As an experiment, the NWP model–based QPF resulting from the hydrologic system forced by 

advanced QPF can be input to the hydrologic model with post processing and bias adjustment to form 

an integrated hydrologic forecast system. The system should be used to hindcast streamflow in 

selected basins with various sizes and other characteristics. The results can be evaluated by comparing 

measured streamflow with simulations driven by atmospheric measurements and forecasts. 
TEST METHODS FOR BLENDING ENSEMBLE FORECASTS ACROSS TIME SCALES 

Many of the forecast centers and research studies used a single source of NWP model output. Usually, 

NWP model output is available at a variety of resolutions and lead times. The integrated hydrologic 

forecasting system should be forced with a seamless time series that includes the best information 

from all sources and is internally consistent. A few examples combine medium and seasonal forecasts 

such as Vitart et al. (2008), but it would be useful to know if these methods are relevant at short time 

scales. 

 
5-3-2 Parameter Estimation and Predictive Uncertainty 

It should be clear from the preceding chapters that limitations of both model structures and the data 

available on parameter values, initial conditions and boundary conditions, and methods of solution will 

generally make it difficult to apply a hydrological model (of whatever type) without some form of 

calibration (Conditioning). Moreover there are other errors (Uncertainties) such as: 
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- Uncertainties in the predicting of a calibrated model 

- Uncertainties that have been overlooked such as ambiguity concept (Daliri, 2019 [3] and 

including know omissions and unknow unknowns [16]. 

 

In approaching the problem of model calibration or conditioning, there are a number of very basic 

points to keep in mind. These may be summarised as follows [16]: 

 

-There is most unlikely to be one right answer. Many different models and parameter sets may give 

good fits to the data and it may be very difficult to decide whether one is better than another. In 

particular, having chosen a model structure, the optimum parameter set for one period of observations 

may not be the optimum set for another period. This is because so many of the sources of error in 

rainfall–runoff modelling are not simply statistical in nature (aleatory uncertainties). They are much 

more the result of a lack of knowledge (epistemic uncertainties, what Knight (1921) called the real 

uncertainties). In principle, epistemic uncertainties can be reduced by more observations and 

experiment. In practice, this tends to increase our appreciation of complexity without greatly 

improving predictions. 

• Calibrated parameter values may be valid only inside the particular model structure used. It may not 

be appropriate to use those values on different models (even though the parameters may have the same 

name) or in different catchments. 

• Model results will be much more sensitive to changes in the values of some parameters than to others. 

A basic sensitivity analysis should be carried out early on in a study. Different performance measures 

will usually give different results in terms of both the “optimum” values of parameters and the relative 

sensitivity of different parameters. 

• Sensitivity may depend on the period of data used and, especially, on whether a particular component 

of the model is “exercised” in a particular period. If it is not, for example if an infiltration excess 

runoff production component is only used under extreme rainfalls, then the parameters associated with 

that component will appear insensitive. 

• Model calibration has many of the features of a simple regression analysis, in that an optimum 

parameter set is one that, in some sense, minimises the overall error or residuals. There are still 

residuals, however, and this implies uncertainty in the predictions of a calibrated model. As in a 

statistical regression, these uncertainties will normally get larger as the model predicts the responses 

for more and more extreme conditions relative to the data used in calibration. 

• Both model calibration (in the sense of finding an optimum parameter set) and model conditioning 

(finding a joint posterior parameter distributions) will depend on the shape of a response surface in 

the parameter space for the chosen performance or likelihood measure (Fig 5-14). The complexity of 

that surface depends on the interaction of the model with errors in the input data and, in some cases, 

on the implementation of the numerical solution to the model equations. 

• Because of epistemic uncertainties, there can be no completely objective analysis of uncertainty in 

rainfall–runoff modelling. The analysis, therefore, depends on a set of assumptions that a modeller is  
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Figure 5-14 Response surface for two TOPMODEL parameters in an application to modelling the stream discharge of the 

small Slapton Wood catchment in Devon, UK; the objective function is the Nash–Sutcliffe efficiency that has a value of 

1 for a perfect fit of the observed discharges[16] 

 

prepared to accept and justify with a particular purpose in mind. Thus, the results of such an analysis 

should always be associated with a clear exposition of the assumptions on which it is based. 

 

5-3-2-1 Methods of model calibrating  

Methods of model calibration that assume an optimum parameter set and ignore the estimation of 

predictive uncertainty. These methods range from simple trial and error, with parameter values 

adjusted by the user, to the variety of automatic optimisation methods. 

Sensitivity analysis and Performance measures 

Once one or more models have been chosen for consideration in a project, it is necessary to address 

the problem of parameter calibration. It is unfortunate that it is not, in general, possible to estimate the 

parameters of models by either measurement or prior estimation. Studies that have attempted to do so  
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have generally found that, even using an intensive series of measurements of parameter values, the 

results have not been entirely satisfactory (Beven et al., 1984; Refsgaard and Knudsen, 1996; Loague 

and Kyriakidis, 1997). Prior estimation of feasible ranges of parameters also often results in ranges of 

predictions that are wide and may still not encompass the measured responses all of the time (Parkin 

et al., 1996; Bathurst et al., 2004) [16]. 

The efficiency of parameter calibration would clearly be enhanced if it was possible to concentrate the 

effort on those parameters to which the model simulation results are most sensitive. This requires an 

approach to assessing parameter sensitivity within a complex model structure. Sensitivity can be 

assessed with respect to both predicted variables (such as peak discharges, discharge volume, water 

table levels, snowmelt rates, etc.) or with respect to some performance measure. Both can be thought 

of in terms of their respective response surfaces in the parameter space. One definition of the sensitivity 

of the model simulation results to a particular parameter is the local gradient of the response surface 

in the direction of the chosen parameter axis. This can be used to define a normalised sensitivity index 

of the form: 

 
 

                            5-32 
 

where Si is the sensitivity index with respect to parameter i with value xi and Q is the value of the 

variable or performance measure at that point in the parameter space (see, for example, McCuen, 

1973)[16]. The gradient will be evaluated locally, given values of the other parameters, either 

analytically for simple models or numerically by a finite difference, i.e. by evaluating the change in Q 

as xi is changed by a small amount (say 1%). Thus, since the simulation results depend on all the 

parameters, the sensitivity Si for any particular parameter i will tend to vary through the parameter 

space (as illustrated by the changing gradients for the simple cases in Figure 5-14). Because of this, 

sensitivities are normally evaluated in the immediate region of a best estimate parameter set or an 

identified optimum parameter set after a model calibration exercise[3]. 

The definition of a parameter response surface as outlined above and shown in Figures 5-14  requires 

a quantitative measure of performance, goodness of fit or likelihood. It is not too difficult to define the 

requirements of a rainfall–runoff model in words: we want a model to predict the hydrograph peaks 

correctly, to predict the timing of the hydrograph peaks correctly, and to give a good representation of 

the form of the recession curve to set up the initial conditions prior to the next event. We may also 

require that, over a long simulation period, the relative magnitudes of the different elements of the 

water balance should be predicted accurately. The requirements might be somewhat different for 

different projects, so there may not be any universal measure of performance that will serve all 

purposes Fig 5-15). 

Automatic optimisation methods 

Detail discussion of these techniques in respect of hydrological models is given by Sorooshian and 

Gupta (1995). Main methods we can mention shuch as Hill-climbing, Simulated Annealing and 

Genetic algorithm (GA) [16]. 
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Fig. 5-15 Comparing observed and simulated hydrographs 

 

Hill-climbing techniques for parameter calibration have been an important area of research since the 

start of computer modelling in the 1960s. Hill climbing from any point on the response surface requires 

knowledge of the gradient of that surface so that the algorithm knows in which direction to climb. 

The available techniques may be classified into two basic types. Gradient algorithms require the 

gradient of the response surface to be defined analytically for every point in the parameter space. 

Mathematically, this requires that an analytical expression be available for the differential of the model 

output with respect to each parameter value. These methods are not generally used with hydrological 

models since it is often impossible to define such differentials analytically for complex model 

structures. Much more commonly used are “direct search” algorithms that search along trial directions 

from the current point with the aim of finding improved objective function values. Different algorithms 

vary in the search strategies used. Algorithms that have been widely used in rainfall–runoff modelling 

include the Rosenbrock (1960) method and the Simplex method (Nelder and Mead, 1965). The latter 

is explained in a hydrological context by Sorooshian and Gupta (1995) and Daliri. 2009,[3][19][20]. 

Recognising kind of uncertainty in models and data (Analysis) 

Recognising uncertainty in models and data is vital task for hydrologists. Methods of uncertainty 

estimation that are based only on prior assumptions about different sources of uncertainty. These 

methods are grouped under the name “forward uncertainty analysis”. 
In this section, we consider only cases where no observations are available for constraining uncertainty 

through a calibration or conditioning process. In that case, uncertainty estimation has to depend on 

prior assumptions about the different sources of uncertainty. This is then a “forward uncertainty 

estimation” exercise. In most practical applications, it involves an analysis conditional on the choice 

of a certain model structure. We do not try to evaluate the effects of uncertainties that have been 

knowingly or unknowingly overlooked.We are therefore left with the uncertainties in the initial and 

boundary conditions and uncertainties in the parameter estimates. To carry out a forward uncertainty 

estimation we need to decide on the nature of those uncertainties and how they might be represented 

(for example, as statistical distributions or fuzzy variables or …). 
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Once those decisions are made, the uncertainties must be propagated through the model. In the unusual 

case of a model that is linear in its responses and parameters, this can be done analytically (see, for 

example, Beven, 2009)[16]. Rainfall–runoff models (with the exception of simple linear transfer 

functions for runoff routing) are nonlinear, so it is more usual to propagate the uncertainty using a 

Monte Carlo sampling technique. This involves taking random samples from the specified 

distributions, taking account of any interactions if they have been specified as joint distributions, and 

running the model with the chosen values. If the distributions are sampled according to the probability 

density of the specified distributions (for example, using the Latin Hypercube technique of Iman and 

Conover (1982) then this can be a relatively efficient process even for a large number of uncertain 

variables. More approximate methods (for example, those reviewed by Melching, 1995[16]) were 

valuable when computer power was much more limited but have now almost completely disappeared 

from use. The output from such a Monte Carlo study is a set of model “realisations”, each of which is 

associated with a probability (equal if the samples have been drawn to reflect the probabilities defined 

by the prior distributions) and a set of output variables. Thus the distributions of the output variables 

can be formed and different types of uncertainty intervals extracted. 

The aim of uncertainty estimation is to assess the probability of a certain quantity, such as the peak 

discharge of an event, being within a certain interval but it is worth noting that different types of 

interval might be required. Hahn and Meeker (1991), for example, distinguish three different types of 

interval[16]: 

A confidence interval contains the estimate of an unknown characteristic of the quantity of interest, 

for example the mean peak discharge of the event. Since we cannot estimate the peak discharge 

precisely from the sample of model runs available, even the estimate of the mean is uncertain. The 

confidence interval can be used to define the mean estimate with specified probability. Most often, 5% 

and 95% limits are used to define a confidence interval (i.e. a 90% probability that the value lies within 

the interval). Confidence limits can also be calculated for other summary quantities for the distribution 

of peak discharge, such as the variance or even a quantile value. 

• A tolerance interval is defined so as to contain a certain proportion of the uncertain model estimates 

of an observation used in model calibration. For the peak discharge example, tolerance intervals could 

be defined for the model predictions of a particular observed peak used in model calibration. 

• A prediction interval can be defined as the interval containing a certain proportion of the uncertain 

model estimates of peak discharge (or any other predicted variable) for a future event. In rainfall–
runoff modelling, we are mostly interested in prediction intervals after calibration or conditioning of a 

model. Uncertainty limits are related to the changes in the predicted variable in the parameter space 

or, more precisely, if a predicted variable (rather than the performance measure) is represented as a 

surface in the parameter space, to the gradient or slope of the surface with respect to changes in the 

different parameter values. If the slope is steep then the uncertainty in the predictions is large. If the 

slope is quite small, however, then the uncertainty is predicted as small since the predicted variable 

changes  little if the parameter is considered to be uncertain. Recalling Equation (5-32), the slopes are 

an indication of the local sensitivity of the predictions to errors in the estimation of the parameter 

values. 
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5-3-2-2 Considering predictive uncertainty 

There are some methods for model calibration to consider some above uncertainties such as Bayesian 

statistical methods, Theoretic methods and GLUE method (Generalised Likelihood Uncertainty 

Estimation) [16].  

For example, More recently, however, Bayesian methods have come to dominate statistical analysis 

again, primarily as a result of the more sophisticated and powerful computer methods that can be 

brought to bear in estimating the posterior distribution and resulting prediction uncertainties for 

nonlinear models. 

Bayesian analysis requires three basic elements: 

• a definition of the prior distribution for the uncertain quantities to be considered (in some cases,“

noninformative” priors might be defined where there is no prior knowledge about a quantity); 

• a definition of the likelihood function that reflects how well a model can predict the available 

observations; 

• a method for integrating the product of prior probabilities and likelihoods to calculate the posterior 

distribution 

We can also use several models with parameters sets to product a range of variable distribution 

probability based on experience of the hydrologist to consider total uncertainties, Daliri, 2019 [3]. An 

alternative approach to model calibration is to try to determine a set of acceptable models. Set theoretic 

methods of calibration are generally based on Monte Carlo simulation. A large number of runs of the 

model are made with different randomly chosen parameter sets. Those that meet some performance 

criterion or criteria are retained, those that do not are rejected. The result is a set of acceptable models, 

rather than a single optimum model. Using all the acceptable models for prediction results in a range 

of predictions for each variable of interest, allowing an estimation of prediction intervals. This type of 

method has not been used widely in rainfall–runoff modelling (with the exception of the GLUE variant 

described in follow) but there were a number of studies in water quality modelling (see, for example 

Klepper et al., 1991; Rose et al., 1991; van Straten and Keesman, 1991). To demonstrate the use of the 

model and the resulting prediction limits with the Sacramento ESMA type rainfall–runoff model, 

researchers used in the US National Weather Service River Forecasting System, in an application to 

the Leaf River catchment, Mississippi. The model has 13 parameters to be calibrated. Two 

performance measures were used in the calibration, a sum of squared errors and a heteroscedastic 

maximum likelihood criterion. 500 parameter sets were evolved to find the Pareto optimal set, 

requiring 68 890 runs of the model. The results are shown in terms of the grouping of the 500 final 

parameter sets on the plane of the two performance measures (from Yapo et al., 1998) and the 

associated ranges of discharges predicted by the original randomly chosen parameter sets and the final 

Pareto optimal set (from Gupta et al., 1998). A major advantage of the Pareto optimal set methodology 

is that it does not require different performance measures to be combined into one overall measure.  
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Gupta et al. (1999) suggest that this method is now competitive with interactive methods carried out 

by a modelling expert in achieving a calibration that satisfies the competing requirements on the model 

in fitting the data. 

If we accept that there is no single correct or optimal model, then another approach to estimating 

prediction limits is to estimate the degree of belief we can associate with different models and 

parameter sets: this is the basic idea that follows from recognising the equifinality of models and 

parameter sets (Beven, 1993, 2006a, 2009)[16]. Certainly we will be able to give different degrees of 

belief to different models or parameter sets, and many we may be able to reject because they clearly 

do not give the right sort of response for an application. The “optimum” , given some data for 

calibration, will have the highest degree of belief associated with it but, as we discuss in this section, 

there may be many other models that are almost as good. In the GLUE methodology, a prior 

distribution of parameter values is used to generate random parameter sets for use in each model using 

Monte Carlo simulation. An input sequence is used to drive each model and the results are compared 

with the available calibration data. A quantitative measure of performance is used to assess the 

acceptability of each model based on the modelling residuals. Any of the appropriate likelihood 

measures could serve this purpose. The only requirements are that the measure should increase 

monotonically with increasing goodness of fit and that “nonbehavioural”  models should have a 

likelihood of zero. Different likelihood measures or combinations of likelihood measures will, 

however, lead to different estimates of the predictive uncertainty. In using the model for predictions, 

all simulations with a likelihood measure greater than zero are allowed to contribute to the distribution 

of predictions. The predictions of each simulation are weighted by the likelihood measure associated 

with that simulation. The cumulative likelihood weighted distribution of predictions can then be used 

to estimate quantiles for the predictions at any time step. 

Implementation of the GLUE methodology requires a number of decisions to be made as follows: 

 

• which model or models to include in the analysis; 

• a feasible range for each parameter value; 

• a sampling strategy for the parameter sets; 

• an appropriate likelihood measure or measures, including conditions for rejecting models that would 

not be considered useful in prediction on the basis of their past performance, so leaving those that are 

considered behavioural. 

These decisions are all, to some extent, subjective but an important point is that they must be made 

explicit in any application. Then the analysis can be reproduced, if necessary, and the decisions can be 

discussed and evaluated by others.  

 

Dynamic Parameters and Model Structural Error 

In particular, the potential interaction between input errors and model structural errors was noted (see 

also Beven, 2005). Model structural error in statistical analysis of uncertainties is generally ignored 

(unless some identifiable functional form of model inadequacy or discrepancy function can be defined; 
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 model identification is generally carried out as if the model was correct. But of course, in hydrology, 

we know very well that the model is only a very approximate representation of the complexity of the 

processes occuring in a catchment, and in some cases might not be at all good. Thus, assuming the 

model is correct might not be a good assumption. Application of several model sets may be useful for 

this challenge. So, As noted earlier, multiple model structures are easily incorporated into the 

equifinality principle and the GLUE framework, as long as each model structure is subject to the same 

type of evaluation to infer a likelihood weighting. Another approach has been to use filtered estimates 

of parameter distributions that are allowed to evolve over time (dynamic identifiability (DYNIA) 

approach ofWagener et al. (2003) [16]. 

 

Some sources of GLUE software are listed here: 

 

A more detailed guide to software for random number generation and uncertainty estimation methods 

can be found at www.uncertain-future.org.uk. 

GLUE Lancaster University provides a Windows (32 bit only) demonstration GLUE package 

as a teaching aid. It provides tools for sensitivity analysis and uncertainty estimation using the 

results of Monte Carlo simulations. It is available from www.lec.lancs.ac.uk/research/catchment 

and aquatic processes/software.php. 

A MATLAB version of GLUE has been developed by Marco Ratto at the EU Joint Research Centre, 

Ispra, Italy. This allows for more parameters and more Monte Carlo runs than theWindows demonstration 

version and can be downloaded from http://eemc.jrc.ec.europa.eu/Software-GLUEWIN.htm. 

DYNIA, with GLUE, is included in the Imperial College Monte Carlo toolbox for MATLAB that can 

be found at www3.imperial.ac.uk/ewre/research/software/toolkit. 

PEST is a suite of software for parameter estimation, sensitivity analysis and uncertainty estimation, 

developed by John Doherty et al. It is applicable to a wide range of models including highly parameterised 

distributed models. It has a variety of regularisation techniques to reduce the parameter dimensions. 

The main inversion technique is based on a weighted least squares approach. It is available from 

www.pesthomepage.org/Home.php. 

UncertML OGC-compatible standards for communicating uncertainty in variables and model results 

are being developed under the UncertML project. See www.uncertml.org. 

 

5-3-3 Decision making under uncertainty and Risk  

We can use of those uncertain predictions?  

One interpretation is in terms of the risk of a certain outcome in certain circumstances, given the model 

as a means of extrapolating knowledge and understanding to those circumstances. Both statistical and 

nonstatistical approaches to uncertainty estimation can be interpreted in this way. In essence, 

evaluating the risk of an outcome based on the model predictions is also an evaluation of the risk of  
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the model predictions being wrong (as they may well prove to be). 

Risk, however, is something that is readily incorporated into modern decision-making processes, when 

it may also be necessary to take account of the costs of mitigating that risk, for example, in enlarging 

a reservoir spillway or raising flood embankments (section 5-3-3-1 & 5-3-3-3). The important point is 

that the risk associated with the model predictions should be included in the decision analysis. In risk-

based decision making, a common technical definition of risk is as: 

 

Risk = probability * consequences 

 

In the general case, both the probability and the consequences should be considered as uncertain 

quantities themselves. The consequences are usually some expected loss (often expressed in monetary 

terms). Such uncertainties might affect the decision that is made about reducing the risk, so it is 

important that they be incorporated into the analysis.  

One rather simple way of doing so is to integrate over all the uncertainties to produce a cumulative 

distribution (pcd) of risk. This can then (as in the simple case of estimating a flood frequency) be 

expressed in terms of the exceedance probability (EP) of a given level of loss. Thus, the EP(x > X) can 

be defined in terms of the cumulative density function of the risk of an outcome F(X), obtained by 

integrating over all probabilities of a consequence less than X, given the probabilities of possible 

outcomes (both of which might involve some uncertainty): (EP(x > X) = 1 - F(X)). 

There are many example about risk nanlysis in water supply and river hydrauilic calculations in text 

of [3]. 

 

5-3-3-1 Short-term future risk management: Flood Forecasting 

Catchment (river basin  or watershed, urban area) systems are not stationary systems; both their 

characteristics (time of concentration, land use, soil infiltration, slop, climate, debt regime, drainage, 

water table, soil moisture, effective area, …) and the inputs (ran intensity and movement, duration, ..) 

which drive the hydrology are changing over time and space (Milly et al., 2008). There are two types 

of future risk that need to be managed in catchment hydrology where rainfall–runoff models can play 

a useful role. The first is the short-term forecasting problem of whether an important flood discharge 

with the potential to pose a threat to life or property will occur. The second is the longer term seasonal 

or decadal prediction problem of whether changes in catchment characteristics or climate might pose 

a threat to water resources or flood and drought frequencies. Both of these problems are dependent on 

the inputs from weather and climate prediction models, which are associated with significant 

uncertainties in their predictions, including epistemic uncertainties. Managing these risks therefore 

requires consideration of a cascade of uncertainties through multiple model components and seeking 

ways to constrain the resulting uncertainty using forms of data assimilation wherever possible (e.g. 

Pappenberger et al., 2005b). 

Predicting the longer term hydrological effects of change of both climate and land use is certainly a 

currently fashionable indoor sport but can effect to flood characteristics by the impacts of global  

 



       

         Flood Forecasting Uncertainties 

 

 

 

2
4

0
 

warming, deforestation and other changes such as the greenhouse effect, the ozone hole over 

Antarctica, the El Ni˜no effect, satellite pictures of burned and burning forests in Amazonia and the 

increasing demands of a growing global population on the world’s freshwater resources and land. 

Hydrological modelling contributes only a small part of the Global Atmosphere–Ocean–Land 

Modelling systems that are being used to predict changes into the next century. It is not, however, an 

insignificant part. Global circulation models (GCMs) are known to be sensitive to how the hydrology 

of the land surface is represented. 

It follows that, as with models of present-day hydrological responses, we should be qualifying our 

predictions by estimating uncertainties of the impacts of change or, put in another way, the risk of 

seeing a certain degree of impact on flood peaks, minimum flows or the usable water resource in the 

future. Translating uncertainty into a future risk can provide a valuable contribution to the decision-

making process. Risk is the more acceptable face of uncertainty. The decision maker is then faced, 

rather than a prediction surrounded by a fuzzy cloud of uncertainty, with the more manageable problem 

of assessing an acceptable risk. The information provided by the simulations is essentially the same. 

Managing risk in the short term is one of the most important applications of rainfall–runoff modelling, 

particularly for flood forecasting which requires decisions to be made as to whether flood warnings 

should be issued on the basis of the data coming in from raingauges, radar rainfall images, stream 

gauges and the model predictions as the event happens in “real time”. This is a risk management 

problem because of the uncertainties inherent in the modelling process. It is a case where taking 

account of the uncertainties might make a difference to the decision that is made (Krzysztofowicz, 

2001a; Todini, 2004). 

There are a number of simple principles for real-time operational forecasting that can be expressed as 

follows[16]: 

• The event of greatest interest is the next event when a warning might (or might not) need to be issued. 

• The next event is likely to be different from all previous events in some of the details of rainfall pattern, volumes and 

observation uncertainty; rainfall forecast uncertainty; antecedent condition and runoff generation uncertainty; and rating curve 

uncertainty where discharges for overbank flows are of interest. 

• Allowing for uncertainty means being right more often in terms of bracketing when warning thresholds are crossed. It also 

gives a more realistic representation of forecasting capability in communicating with professional partners. 

• Estimating the uncertainty associated with any forecast should not be the end point of the analysis. There are still issues 

about communicating the assumptions of the analysis to those who have to act on predictions, of managing uncertainty by 

post-event analysis, and of trying to reduce the uncertainty by more effective measurements (and longer term improvements 

in the underlying science). 

The requirement is for the forecasts and warnings for an area at risk of flooding to be made as 

accurately as possible and as far ahead as possible or with the greatest possible lead time. We can use 

a model for these predictions that has been calibrated on historical data sets but, because every event 

has its own peculiarities, we should expect that during a flood event the model predictions of river  
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stage or discharge will start to deviate from those values being received online at a flood forecasting 

office from the telemetry outstations. Thus, in any flood forecasting situation it is useful to have data 

assimilation methods that both allow for real-time updating of the forecasts as the event proceeds and 

constrain the uncertainty in the forecasts. This is particularly the case where the sources of uncertainty 

are not simply random but can be the result of lack of knowledge. Krzysztofowicz (2002), for example, 

suggests that: 
operational uncertainty is caused by erroneous or missing data, human processing errors, 

unpredictable interventions (e.g. changes in reservoir releases not communicated by a dam 

operator to the forecaster), unpredictable obstacles within a river channel (e.g. ice jams, trash under bridge,..), 

and the like. 

To these we might add the potential for unexpected breaches of flood defences during an event. In 

forecasting (rather than simulation), these sources of epistemic uncertainty can be at least partially 

compensated by the use of adaptive modelling methods. 

Forecasting methods based on transfer function modelling are ideally suited to these requirements and 

have been quite widely implemented (see, for example, SempereTorres et al., 1992; Cluckie, 1993; 

Moore et al., 1990; Lees et al., 1994; Young, 2002; Romanowicz et al., 2006, 2008). An example 

application using the DBM (data-based mechanistic) methodology is provided by Leedal et al. (2008), 

who describe the implementation of a flood forecasting system for the town of Carlisle on the River 

Eden in Cumbria, the model assimilates data at each gauging station site and generates forecasts with 

a six-hour lead time.[16]. 

 

5-3-3-2 Rainfall-Runoff modeling for FF 

Data requirements 

One of the most important ways of mitigating the costs of flood damage is the provision of adequate 

warnings, allowing people to act to protect their property and themselves. This process is very much 

easier in large catchments where the build up of a flood and the transmission of the flood wave 

downstream can take days or even weeks. In small catchments, with short times to peak, real-time 

flood forecasting, is much more difficult. The most extreme discharges in such catchments tend to 

occur as a result of localised convective rainfalls or high intensity cells within larger synoptic weather 

systems. 

Events where the required lead time for issuing a warning is less than the catchment response time are 

called “flash floods”. The potential for a flood-producing rainfall might be recognised but it may be 

very difficult to specify exactly where. To make adequate warnings requires knowledge of the rainfalls 

as they occur or, even better, accurate forecasts of potential rainfall intensities ahead of time, which 

would allow an increase in the forecast lead time that might be important for small catchments and 

flash floods. 

Forecasting rainfalls generally now involves a combination of projecting radar rainfall images into 

the future and ensemble weather predictions of future precipitation (for example the UK Met Office 

NIMROD radar and MOGREPS forecast products). 

At least for cases where the catchment response time is greater than the lead time for decision making, 
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this makes it important that any rainfall–runoff model used be capable of real-time adaptation to take 

account of any errors in the forecasts resulting either from errors in the inputs, whether from radar or 

rainfall, or from error in the model structure. This requires, however, that the flood warning centre also 

receive information about river stages in real time, at one or more gauging stations in a catchment, so 

that model forecasts can be compared with observed stages or discharges in real time and the model 

adapted to produce more accurate forecasts (at least until the gauge is washed away or the telemetering 

system fails). 

There is another reason why observed stage information might be useful in flood warning, particularly 

in larger catchments where the time delays in the channel system are sufficiently long compared with 

the required lead time for a forecast. In general, two to six hours would be the minimum feasible lead 

time to allow a warning to be transmitted to the public but longer lead times might be needed for 

decisions about deploying demountable flood defences, for example. A measurement of the discharge 

or stage upstream can be used as part of the system for forecasting the stage and discharge and timing 

of the flood peak further downstream. Such observations can also help constrain the uncertainty in 

propagating forecasts from the headwaters of a catchment in predicting the risk to flood-prone areas 

downstream. 

In general, flood warnings are issued in relation to the forecast stage of the river at a critical gauging 

point without modelling the detailed pattern of inundation upstream of that point. In many situations 

this may be adequate, since if flooding is predicted to occur somewhere in the flood plain, then a 

general warning can be issued. In large rivers, however, such as the Mississippi, the progress of the 

flood wave downstream may be very much controlled by the pattern of inundation during the flood, 

including the effects of dyke failures which are inherently difficult to predict ahead of time. Thus it 

may be necessary to use a hydraulic routing model in forecasting the expected depths downstream, 

continually revising the calculations as conditions change (although transfer function methods can also 

be used for this purpose for specific sites; see, for example, the work of Beven et al. (2008), which 

includes the use of data assimilation where measured levels are available. The use of a hydraulic 

model adds the requirement of knowing the channel and flood plain topography, together with 

parameters such as effective resistance coefficients. Channel form, can of course change during a flood 

event due to erosion and deposition. Models of sediment transport in rivers have not advanced to the 

stage where they can be used operationally and most current hydraulic flood routing models use a 

“fixed bed” assumption. 

rainfall–runoff modelling 

Any rainfall–runoff model that has been calibrated for a particular catchment can be used in the 

prediction of flood discharges[16]. The US National Weather Service River Forecast System (Burnash, 

1995), for example, is a development of the Sacramento model, a form of lumped explicit soil moisture 

accounting model with many parameters to be calibrated (see, for example, Sorooshian et al., 1992; 

and Gupta et al.,1999). 

Experience suggests that uncertainty in both measurements and predictions of flood peaks increases 

with peak magnitudes. In addition, even if a model has been calibrated for a certain range of discharges, 
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uncertainty is bound to increase as predictions are made outside this calibration range for extreme 

events. Thus, it may not be possible to predict ahead of time whether a flood stage will definitely be 

exceeded in  a event; it may, however, be possible to assess the risk that the flood stage will exceeded 

by consideration of the distribution of (uncertain) predictions. 

An early comparison of real-time forecasting methods, including adaptive schemes, was carried out 

by the World Meteorological Organisation (WMO, 1975) and a review of approaches has been given 

by Moore (1999). Ensemble forecasting systems have been reviewed by Cloke and Pappenberger 

(2009) including experience from the Hydrological Ensemble Prediction Experiment (HEPEX) 

(Schaake et al., 2007). 

It is also possible to take an approach that makes no attempt at all to model runoff generation during 

flood forecasting. As noted in before chapters, neural net models and support vector machine models 

have been popular as a means of estimating N-step ahead flood discharges, using inputs that include 

rainfalls and previous values of discharge or water levels and a training set of historical events. In 

discussing neural network models, however, it has already been noted that such models are grossly 

over-parameterised and there has to be some concern then that methods based only on data analysis 

might not be accurate in predicting events more extreme than those included in the training set. 

 

The Lambert ISO model 

The first model is an adaptive deterministic method due to Lambert (1972) that is very difficult to 

beat in forecasting the response of small catchments. This Input–Storage–Output (ISO) model has 

been used in a number of UK flood forecasting schemes, particularly in the River Dee catchment in 

north Wales. 

 

Adaptive Transfer Function models for real time forecasting 

As noted earlier, the propensity for error in the predictions during extreme events also suggests that 

it would be advantageous to use an adaptive modelling strategy, so that if a comparison of observed 

and predicted discharges reveals that the model predictions are in error, then a strategy for adjusting 

the model predictions can be implemented. This is clearly only possible where discharge or river stage 

measurements can be made available in real time. Adaptation is also more easily implemented for 

simpler models. Adaptive transfer functions can be used for both rainfall– runoff and upstream 

discharge (or stage) to downstream discharge (or stage), depending on what data are available. The 

example application presented in the case study is for an operational forecasting model for the town of 

Carlisle in Cumbria, that uses both rainfall – flow and discharge – discharge transfer functions. 

Adaptation of such models can be implemented in a number of different ways. In the Carlisle model, 

a simple adaptive gain parameter is used, i.e. the transfer function is scaled up or down in real time 

without changing its form. This simple approach has proven very effective in this and other 

applications. 
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The Bayesian forecasting system (BFS) and Quantile regression 

The Bayesian forecasting system and quantile regressions as other ways of adding uncertainty to the 

forecasts of deterministic rainfall–runoff models [16]. 

 

software 

These types of model can be made part of a larger flood forecasting system that includes flood routing 

components. For the River Dee catchment, for example, ISO models were developed for all the gauged 

subcatchments and linked to a flood routing model. The Forecasting and EarlyWarning System (FEWS) 

developed by Deltares in the Netherlands (e.g. Werner et al., 2004) provides a unified framework for 

networking different model components in this way that has been implemented in a number of other countries 

including the UK Environment Agency National Flood Forecasting System. The FEWS software is 

freely available under licence. 

 

 

5-3-3-3 Optimal Design of Levee, Dam and Flood Control Systems 

Optimal design to operating policy of hydraulic structures’s single flood control system (dyke, dam 

reservoirs) or multiple systems (water supply and flood control dams) can based on flood forecasting 

systems and risk-based concepts[3]. 

Upstream flood reservoir operations and downstream levee construction are two common ways to 

protect from flooding. Most traditional risk-based analyses for optimal levee design focus primarily 

on overtopping failure, and few risk analysis studies explicitly include the more frequently observed 

intermediate geotechnical failures. So, we can first develops a risk based optimization model and for 

single levee designs given two simplified levee failure modes[22]: 

- overtopping and  

- overall intermediate geotechnical failures. 

The optimization minimizes the annual expected total cost, which sums the expected annual damage 

cost and annualized construction cost. This optimization model is then extended to examine a common 

simple levee system with levees on opposite river banks, allowing flood risk transfer across the river. 

The economic optimality of asymmetric levee system is demonstrated mathematically and analytically, 

for overtopping failure, overall intermediate geotechnical failure and a combination of failure modes. 

Where residual flood risk is completely transferred to the low-valued river bank at economic 

optimality, individuals may be compensated for the transferred flood risk to guarantee and improve 

outcomes for all parties. Such collaborative designs of the two levee system are economically optimal 

for the whole system. However, rational and self-interested land owners that control levees on each 

river bank separately often tend to independently optimize their levees. By applying game theory to 

the simple levee system, the cooperative game with a system-wide economically optimal design and 

the single-shot non-cooperative Nash equilibrium are identified, and the successive repeated non-

cooperative reversible and irreversible games are examined. Compensation for the transferred flood  
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risk can be determined by comparing different types of games and implemented with land owners’ 

agreements on allocations of flood risk and benefits. The resulting optimized flood risks to a 

downstream leveed area would further affect the upstream reservoir’s operation in optimizing flood 

hedging prereleases, which would create a small flood downstream by pre-storm release to reduce the 

likelihood of a larger more damaging flood in the future. Overall damages from flood pre-release 

decisions must be convex for flood hedging to be optimal. Some theoretical conditions for optimal 

flood hedging are explored: the fundamental one is that the current marginal damages from pre-releases 

equals the future marginal expected damages from storm releases. Any additional economic water 

supply lost from pre-releases tends to reduce the use of hedging prerelease for flood management[22]. 

 

5-3-3-4 FF Using Machine learning methods 

Nowadays, the degree and scale of flood hazards has been massively increasing as a result of the 

changing climate, and large-scale floods jeopardize lives and properties, causing great economic 

losses, in the inundation-prone areas of the world. Early flood warning systems are promising 

countermeasures against flood hazards and losses. A collaborative assessment according to multiple 

disciplines, comprising hydrology, remote sensing, and meteorology, of the magnitude and impacts of 

flood hazards on inundation areas significantly contributes to model the integrity and precision of flood 

forecasting. Methodologically oriented countermeasures against flood hazards may involve the 

forecasting of reservoir inflows, river flows, tropical cyclone tracks, and flooding at different lead 

times and/or scales. Analyses of impacts, risks, uncertainty, resilience, and scenarios coupled with 

policy-oriented suggestions will give information for flood hazard mitigation. Emerging advances in 

computing technologies coupled with big-data mining have boosted data-driven applications, among 

which Machine Learning technology, with its flexibility and scalability in pattern extraction, has 

modernized not only scientific thinking but also predictive applications. Readers can explores recent 

Machine Learning advances in flood forecast and management in a timely manner and presents 

interdisciplinary approaches to modelling the complexity of flood hazards-related issues, with 

contributions to integrative solutions from a local, regional, or global perspective for example: 

Building an Intelligent Hydroinformatics Integration Platform for Regional Flood Inundation 

Warning Systems and ect (Fig 5.16). 
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Figure 5-16. Relationships between four servers, five modules and three sub-systems [22] 
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